Obstructions of apex classes of graphs

Stan Dziobiak (Ole Miss)

joint work with:

Guoli Ding (LSU)

November 2, 2013

Minors

- If e is an edge of G incident with two distinct vertices u and v, then the contraction of e is the operation of deleting e and identifying u and v.
- Given graphs G and H, we say that H is a minor of G (or that G has an H-minor), denoted by $H \leqslant_{m} G$ if H can be obtained from G by any sequence of the following operations:
- deleting an edge;
- deleting a vertex (and all of its incident edges);
- contracting an edge.
- Note: The order of operations of deletion and contraction to get a minor of a graph is irrelevant.

Minors example

Kuratowski's and Wagner's Theorems

Theorem (Kuratowski '30, Wagner '37)

A graph G is planar if and only if G does not contain K_{5} or $K_{3,3}$ as a minor.

K_{5}

$K_{3,3}$

Minor-closed classes

- A class \mathcal{C} of graphs is minor-closed if for every $G \in \mathcal{C}$, if $H \leqslant m G$ then $H \in \mathcal{C}$.

Example

- $\mathcal{P}:=$ \{planar graphs $\}$
- \{projective-planar graphs\}
- \{toroidal graphs\}
- $\{G: G$ is embeddable in $\Sigma\}$, where Σ is a fixed surface
- \{linklessly embeddable graphs\}
- $\{G: G$ has no H-minor $\}$, where H is a fixed graph
- $\left\{G: G\right.$ has no K_{4}-minor $\}=\{$ series-parallel graphs $\}=\{G: \operatorname{tw}(G) \leqslant 2\}$
- $\{G: \mathbf{t w}(G) \leqslant k\}$, where k is a fixed positive integer
- $\{G: \operatorname{pw}(G) \leqslant k\}$, where k is a fixed positive integer
- $\mathcal{O}:=$ \{outerplanar graphs $\}$
- $\mathcal{O}^{*}:=$ \{apex-outerplanar graphs\}

Excluded minors, Obstruction sets

- Given a graph H and a minor-closed class \mathcal{C}, we say that H is an excluded minor of \mathcal{C}, if H is a minor-minimal graph not in \mathcal{C} (i.e. $H \notin \mathcal{C}$, but for all $e \in E(H)$, $H \backslash e \in \mathcal{C}$ and $H / e \in \mathcal{C})$.
- For a minor-closed class \mathcal{C}, the set of excluded minors of \mathcal{C} is called the obstruction set of \mathcal{C}, and is denoted by $\mathbf{o b}(\mathcal{C})$.
- Note: $\mathbf{o b}(\mathcal{C})$ completely characterizes \mathcal{C}, because $G \notin \mathcal{C} \Longleftrightarrow G$ contains one of the graphs in $\mathbf{o b}(\mathcal{C})$ as a minor (excluded-minor characterization).

Graph Minor Theorem

Theorem (Robertson, Seymour '83-'10)
(GMT) For any minor-closed class $\mathcal{C}, \mathbf{o b}(\mathcal{C})$ is finite.

Proof.

A series of 23 papers totalling several hundred pages published over 27 years...

Equivalently,
Theorem
In any infinite set of graphs, at least one graph is a minor of another.

Importance of knowing $\mathbf{o b}(\mathcal{C})$

Theorem (Robertson, Seymour '95)

For any fixed graph H, there is an algorithm to determine whether a given n-vertex graph has H as a minor in $O\left(n^{3}\right)$-time.

Consequently,

Corollary

(Membership Testing) For any minor-closed class \mathcal{C}, there is an algorithm to determine whether a given n-vertex graph G belongs to \mathcal{C} in $O\left(n^{3}\right)$-time.

Known excluded-minor characterizations

Example

- $\boldsymbol{o b}$ (planar graphs) $=\left\{K_{3,3}, K_{5}\right\}$ (Kuratowski '30, Wagner '37)
- ob(series-parallel graphs) $=\left\{K_{4}\right\}=\mathbf{o b}$ (graphs of tree-width $\leqslant 2$) (Dirac '52)
- |ob(projective-planar graphs) $\mid=35$ (Archdeacon '81)
- ob(graphs of tree-width $\leqslant 3)=\left\{K_{5}, V_{8}, O c t, L_{5}\right\}$ (Arnborg, Corneil, Proskurowski '90; Satyanarayana, Tung '90)
- |ob(linklessly embeddable graphs) $\mid=7$ (Robertson, Seymour, Thomas '95)
- ob(outerplanar graphs) $=\left\{K_{2,3}, K_{4}\right\}$ (Chartrand, Harary '67)
- $\mid \mathbf{o b}(\alpha$-outerplanar graphs) $\mid=13$ (Wargo '96)
- |ob(apex-outerplanar graphs) $\mid=57$ (Ding, D. '10)

Apex-outerplanar graphs

- A graph is outerplanar if it can be embedded in the plane (with no edges crossing) with all vertices incident to one common face.
- A graph G is apex-outerplanar if there exists $v \in V(G)$ such that $G-v$ is outerplanar. Such a vertex v is called an apex vertex of G.

- We let \mathcal{O} and \mathcal{O}^{*} denote the classes of outerplanar and apex-outerplanar graphs, respectively.
- Note: Since having loops or parallel edges has no impact on (apex-) outerplanarity, all graphs in the remainder of the talk are assumed to be

Apex-outerplanar graphs

- A graph is outerplanar if it can be embedded in the plane (with no edges crossing) with all vertices incident to one common face.
- A graph G is apex-outerplanar if there exists $v \in V(G)$ such that $G-v$ is outerplanar. Such a vertex v is called an apex vertex of G.

- We let \mathcal{O} and \mathcal{O}^{*} denote the classes of outerplanar and apex-outerplanar graphs, respectively.
- Note: Since having loops or parallel edges has no impact on (apex-) outerplanarity, all graphs in the remainder of the talk are assumed to be simple.

General Framework

- Let \mathcal{C} be a minor-closed class of graphs, and let \mathcal{C}^{*} be the class of graphs that contain a vertex whose removal leaves a graph in \mathcal{C}.
- Note: $\mathcal{C} \subseteq \mathcal{C}^{*}$, and \mathcal{C}^{*} is minor-closed

- General Problem:

Given: a minor-closed class C and ob(C) Find: $\mathrm{ob}\left(\mathrm{C}^{*}\right)$
\rightarrow Already very hard for $C=\mathcal{P}=$ \{planar graphs $\}$

General Framework

- Let \mathcal{C} be a minor-closed class of graphs, and let \mathcal{C}^{*} be the class of graphs that contain a vertex whose removal leaves a graph in \mathcal{C}.
- Note: $\mathcal{C} \subseteq \mathcal{C}^{*}$, and \mathcal{C}^{*} is minor-closed

- General Problem:

Given: a minor-closed class \mathcal{C} and $\mathbf{o b}(\mathcal{C})$
Find: $\mathbf{o b}\left(\mathcal{C}^{*}\right)$

General Framework

- Let \mathcal{C} be a minor-closed class of graphs, and let \mathcal{C}^{*} be the class of graphs that contain a vertex whose removal leaves a graph in \mathcal{C}.
- Note: $\mathcal{C} \subseteq \mathcal{C}^{*}$, and \mathcal{C}^{*} is minor-closed

- General Problem:

Given: a minor-closed class \mathcal{C} and $\mathbf{o b}(\mathcal{C})$
Find: $\mathbf{o b}\left(\mathcal{C}^{*}\right)$

- Adler, Grohe, Kreutzer ('08) showed that this problem is computable...
- Already very hard for $\mathcal{C}=\mathcal{P}=\{$ planar graphs $\}$.

Motivation: Apex-planar graphs

Theorem (Robertson, Seymour '03)

(Structure Theorem) If \mathcal{C} is a proper minor-closed class of graphs, then every graph in \mathcal{C} is glued together in a tree-like fashion from graphs that can be nearly embedded in a fixed surface.

Conjecture (Hadwiger '43)

Graphs with no K_{n}-minor can be colored with at most $(n-1)$ colors.

- The case $n=5$ is equivalent to the Four Color Theorem.
- The case $n=6$ was proved by Robertson, Seymour, and Thomas '93.
- RST proved that every minimal counterexample to Hadwiger's for $n=6$ is apex-planar, so no counterexample exists (by 4CT).

Conjecture (Jorgensen '94)

Every 6-connected graph with no K_{6}-minor is apex planar.

- Implies Hadwiger's for $n=6$.
- Proved for large graphs by DeVos, Hegde, Kawarabayashi, Norin, Thomas, Wollan.

Obstructions of apex-outerplanar graphs

- General Problem:

Given: a minor-closed class \mathcal{C} and $\mathbf{o b}(\mathcal{C})$
Find: $\mathbf{o b}\left(\mathcal{C}^{*}\right)$

- Already very hard for $\mathcal{C}=\mathcal{P}=\{$ planar graphs $\}$.
- So what about $\mathcal{C}=\mathcal{O}=\{$ outerplanar graphs $\}$?
- $\mathbf{o b}(\mathcal{O})=\left\{K_{2,3}, K_{4}\right\}($ Chartrand, Harary '67)

- Problem: Find: $\mathbf{o b}\left(\mathcal{O}^{*}\right)$.

Summary

$$
\begin{array}{ccc}
\mathcal{C}=\{\text { cactus graphs }\} & \mathcal{O}=\{\text { outerplanar graphs }\} & \mathcal{S}=\{\text { series-parallel graphs }\} \\
\mathbf{o b}(\mathcal{C})=\left\{K_{4}-e\right\} & \mathbf{o b}(\mathcal{O})=\left\{K_{2,3}, K_{4}\right\} & \mathbf{o b}(\mathcal{S})=\left\{K_{4}\right\} \\
\mathcal{C}^{*}=\{\text { apex-cactus graphs }\} & \mathcal{O}^{*}=\{\text { apex-outerplanar graphs }\} & \mathcal{S}^{*}=\{\text { apex-series-parallel graphs }\}
\end{array}
$$

$$
\left|\mathbf{o b}\left(\mathcal{C}^{*}\right)\right|=25
$$

(D. '13)
$\left|\mathbf{o b}\left(\mathcal{O}^{*}\right)\right|=57$
(Ding, D. '10)
$\left|\mathbf{o b}\left(\mathcal{S}^{*}\right)\right| \geq 16$
(in progress...)

The Starting Lineup

- GOAL: To find ob $\left(\mathcal{O}^{*}\right)$

The Starting Lineup

- GOAL: To find $\mathbf{o b}\left(\mathcal{O}^{*}\right)$
- The following graphs all belong to $\mathbf{o b}\left(\mathcal{O}^{*}\right)$.

K_{5}

$K_{3,3}$

Oct

Q

$2 K_{4}$

$K_{4} \mid K_{2,3}$

$2 K_{2,3}$

- For each G above, we need to check:
$G \notin \mathcal{O}^{*}$ (i.e. G has an apex vertex)
$\forall e \in E(G), G \backslash e \in \mathcal{O}^{*}$ and $G / e \in \mathcal{O}^{*}$ (i.e. $G \backslash e$ and G / e don't have an apex vertex)

Minor-minimality of Q

$Q-u$

(Q|e)-v

(Q/e) -w

Minor-minimality of Q

$(Q \mid e)-v$

(Q / e) -w

Connectivity is 2 or 3

Let $G \in \mathbf{o b}\left(\mathcal{O}^{*}\right)-\left\{K_{5}, K_{3,3}, O c t, Q, 2 K_{4}, K_{4} \mid K_{2,3}, 2 K_{2,3}\right\}$. Then
(1) G is planar
(2) G is 2-connected
(3) G is not 4-connected

Proof.

(1) G has no $\left\{K_{5}, K_{3,3}\right\}$-minor.
(2) Follows from the fact that G does not contain any of the graphs: $2 K_{4}, K_{4} \mid K_{2,3}$, $2 K_{2,3}$ as a minor.
(3) G is 4 -connected $\Longrightarrow \delta(G) \geqslant 4 \Longrightarrow G \geqslant_{\mathrm{m}} K_{5}$ or $G \geqslant_{\mathrm{m}}$ Oct (Halin, Jung '63), a contradiction.

- $\kappa(G)=2$ or 3

Connectivity-Three Case

We prove:
Lemma
If G is 3-connected in $\mathbf{o b}\left(\mathcal{O}^{*}\right)$, then $G \in\left\{K_{5}, K_{3,3}, O c t, Q\right\}$.

We use the following fact:
Lemma
If G is 3-connected and $|G|>4$, then G has an edge e such that G / e is also 3-connected.

- Such an edge is called contractible.

Connectivity-Three Case

Denote by $v_{x y}$ the vertex formed by contracting edge $x y$. Since G is minor-minimal $\notin \mathcal{O}^{*}$, there are two possibilities:

- Case 1: There exists a contractible edge $x y \in E(G)$ such that $v_{x y}$ is not apex in $G / x y$ (and hence, there exists an apex vertex $a \neq v_{x y}$ in $G / x y$).
- Case 2: For every contractible edge $x y \in E(G), v_{x y}$ is an apex vertex in $G / x y$.

By assuming that $G \in \mathbf{o b}\left(\mathcal{O}^{*}\right)-\left\{K_{5}, K_{3,3}, O c t, Q, 2 K_{4}, K_{4} \mid K_{2,3}, 2 K_{2,3}\right\}$, we show that we reach a contradiction in each case, proving the Lemma.

Connectivity-Two Case

Let G be a graph and $x, y \in V(G)$. A 2-separation of G over $\{x, y\}$ is a pair of induced subgraphs (L, R) of G such that:
(1) $E(L) \cup E(R)=E(G)$;
(2) $V(L) \cup V(R)=V(G)$ and $V(L) \cap V(R)=\{x, y\}$;
(3) $V(L)-V(R) \neq \varnothing$ and $V(R)-V(L) \neq \varnothing$.

- Note: $\{x, y\}$ is a 2 -vertex-cut of G.

Connectivity-Two Case: Key Lemma

Lemma

Let (L, R) be a 2 -separation of G over vertices $\{x, y\}$.
(1) If $L \notin \mathcal{O}$ and $R \notin \mathcal{O}$, then one of L or R is one of the five graphs: $L_{1}, L_{2}, L_{3}, L_{4}$, or L_{5}.

L_{2}

L_{4}

L_{5}
(2) If $L \in \mathcal{O}$, then $x y \notin E(G)$ and $L=P_{2}$ or C_{4}.

Connectivity-Two Case: Roadmap

- Case 1: There exists a 2-separation such that both $L \notin \mathcal{O}$ and $R \notin \mathcal{O}$

- Case 2: For each 2-separation, $L=P_{2}$ or C_{4}

- Case 2.1: There exists a 2-separation such that $L=C_{4}$
- Case 2.1.1: There exists a 2 -separation such that $L=C_{4}$ and $R-\{x, y\} \notin \mathcal{O}$
- Case 2.1.2: There exists a 2-separation such that $L=C_{4}$ and for every such 2-separation $R-\{x, y\} \in \mathcal{O}$
- Case 2.2: For each 2-separation, $L=P_{2}$
- Case 2.2.1: There exists a 2-separation such that $L=P_{2}$ and $R-\{x, y\} \notin \mathcal{O}$
- Case 2.2.2: For each 2 -separation, $L=P_{2}$ and $R-\{x, y\} \in \mathcal{O}$

Case 1

- Case 1: There exists a 2-separation such that both $L \notin \mathcal{O}$ and $R \notin \mathcal{O}$

We yield the T-family $\subseteq \mathbf{o b}\left(\mathcal{O}^{*}\right)$:

Case 1

- Case 1: There exists a 2-separation such that both $L \notin \mathcal{O}$ and $R \notin \mathcal{O}$

We yield the T-family $\subseteq \mathbf{o b}\left(\mathcal{O}^{*}\right)$:

Case $1 \Longrightarrow$ T-family

T_{1}

T_{6}

T_{11}

T_{2}

T_{7}

T_{12}
12

T_{3}

T_{8}

T_{13}

T_{4}

T_{5}

Tg

T_{10}

T_{14}

T_{15}

Case $1 \Longrightarrow$ T-family

T_{12}

T_{16}

T_{21}

T_{22}

T_{24}

T_{25}

Case 2.1.1 \Longrightarrow G-family

- Case 2: For each 2-separation, $L=P_{2}$ or C_{4}

- Case 2.1: There exists a 2-separation such that $L=C_{4}$
- Case 2.1.1: There exists a 2-separation such that $L=C_{4}$ and $R-\{x, y\} \notin \mathcal{O}$

Case 2.1.1 \Longrightarrow G-family

- Case 2: For each 2-separation, $L=P_{2}$ or C_{4}

- Case 2.1: There exists a 2-separation such that $L=C_{4}$
- Case 2.1.1: There exists a 2 -separation such that $L=C_{4}$ and $R-\{x, y\} \notin \mathcal{O}$

We yield the G-family $\subseteq \mathbf{o b}\left(\mathcal{O}^{*}\right)$:

Case 2.1.1 \Longrightarrow G-family

- Case 2: For each 2-separation, $L=P_{2}$ or C_{4}

- Case 2.1: There exists a 2-separation such that $L=C_{4}$
- Case 2.1.1: There exists a 2-separation such that $L=C_{4}$ and $R-\{x, y\} \notin \mathcal{O}$

We yield the G-family $\subseteq \mathbf{o b}\left(\mathcal{O}^{*}\right)$:

Case 2.1.2 \Longrightarrow J-family

- Case 2: For each 2-separation, $L=P_{2}$ or C_{4}

- Case 2.1: There exists a 2-separation such that $L=C_{4}$
- Case 2.1.2: There exists a 2-separation such that $L=C_{4}$ and for every such 2-separation $R-\{x, y\} \in \mathcal{O}$

Case 2.1.2 \Longrightarrow J-family

- Case 2: For each 2-separation, $L=P_{2}$ or C_{4}

- Case 2.1: There exists a 2-separation such that $L=C_{4}$
- Case 2.1.2: There exists a 2-separation such that $L=C_{4}$ and for every such 2-separation $R-\{x, y\} \in \mathcal{O}$

We yield the J-family $\subseteq \mathbf{o b}\left(\mathcal{O}^{*}\right)$:

Case 2.1.2 \Longrightarrow J-family

Case $2.2 .1 \Longrightarrow \mathrm{H}$-family

- Case 2: For each 2-separation, $L=P_{2}$ or C_{4}

- Case 2.2: For each 2-separation, $L=P_{2}$
- Case 2.2.1: There exists a 2-separation such that $L=P_{2}$ and $R-\{x, y\} \notin \mathcal{O}$ We yield the H-family $\subseteq \mathbf{o b}\left(\mathcal{O}^{*}\right)$:

Case $2.2 .1 \Longrightarrow \mathrm{H}$-family

- Case 2: For each 2-separation, $L=P_{2}$ or C_{4}

- Case 2.2: For each 2-separation, $L=P_{2}$
- Case 2.2.1: There exists a 2-separation such that $L=P_{2}$ and $R-\{x, y\} \notin \mathcal{O}$

We yield the H-family $\subseteq \mathbf{o b}\left(\mathcal{O}^{*}\right)$:

Case $2.2 .1 \Longrightarrow \mathrm{H}$-family

Case $2.2 .2 \Longrightarrow$ Q-family

- Case 2: For each 2-separation, $L=P_{2}$ or C_{4}

- Case 2.2: For each 2-separation, $L=P_{2}$
- Case 2.2.2: For each 2-separation, $L=P_{2}$ and $R-\{x, y\} \in \mathcal{O}$

Case $2.2 .2 \Longrightarrow$ Q-family

- Case 2: For each 2-separation, $L=P_{2}$ or C_{4}

- Case 2.2: For each 2-separation, $L=P_{2}$
- Case 2.2.2: For each 2-separation, $L=P_{2}$ and $R-\{x, y\} \in \mathcal{O}$

We yield the Q-family $\subseteq \mathbf{o b}\left(\mathcal{O}^{*}\right)$:

Case 2.2.2 \Longrightarrow Q-family

Main Theorem

Theorem (Ding, D. '10)

$\mathbf{o b}\left(\mathcal{O}^{*}\right)=\left\{K_{5}, K_{3,3}, O c t, Q, 2 K_{4}, K_{4} \mid K_{2,3}, 2 K_{2,3}\right\} \cup \mathcal{T} \cup \mathcal{G} \cup \mathcal{J} \cup \mathcal{H} \cup \mathcal{Q}$
where:

- $\mathcal{T}:=\left\{T_{1}, \ldots, T_{30}\right\}$ (T-family)
- $\mathcal{G}:=\left\{G_{1}, G_{2}, G_{3}, G_{4}, G_{5}\right\}(G$-family $)$
- $\mathcal{J}:=\left\{J_{1}, J_{2}, J_{3}, J_{4}, J_{5}\right\}$ (J-family)
- $\mathcal{H}:=\left\{H_{1}, H_{2}, H_{3}, H_{4}, H_{5}\right\}$ (H-family)
- $\mathcal{Q}:=\left\{Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}\right\}(Q$-family $)$

Obstructions of apex-cactus graphs

- General Problem:

Given: a minor-closed class \mathcal{C} and $\mathbf{o b}(\mathcal{C})$
Find: $\mathbf{o b}\left(\mathcal{C}^{*}\right)$

- What about $\mathcal{C}=\{$ cactus graphs $\}$?

- $\boldsymbol{o b}(\mathcal{C})=\left\{D:=K_{4}-e\right\}$ (El-Mallah, Colbourn '88)

- Problem: Find: $\mathbf{o b}\left(\mathcal{C}^{*}\right)$.

The Starting Lineup

- GOAL: To find ob($\left.\mathcal{C}^{*}\right)$

The Starting Lineup

- GOAL: To find $\mathbf{o b}\left(\mathcal{C}^{*}\right)$
- The following graphs all belong to $\mathbf{o b}\left(\mathcal{C}^{*}\right)$.

- For each G above, we need to check: $G \notin \mathcal{C}^{*}$ (i.e. G has an apex vertex)
$\forall e \in E(G), G \backslash e \in \mathcal{C}^{*}$ and $G / e \in \mathcal{C}^{*}$ (i.e. $G \backslash e$ and G / e don't have an apex vertex)

Connectivity is 2 or 3

Let $G \in \mathbf{o b}\left(\mathcal{C}^{*}\right)-\left\{K_{5}-e, K_{3,3}\right.$, Prism, $\left.2 D\right\}$. Then
(1) G is planar
(2) G is 2-connected
(3) G is not 4-connected

Proof.

(1) G has no $\left\{K_{5}, K_{3,3}\right\}$-minor, because it has no $\left\{K_{5}-e, K_{3,3}\right\}$-minor
(2) Follows from the fact that G does not contain $2 D$ as a minor.
(3) G is 4 -connected $\Longrightarrow \delta(G) \geqslant 4 \Longrightarrow G \geqslant_{\mathrm{m}} K_{5}$ or $G \geqslant_{\mathrm{m}}$ Oct (Halin, Jung '63), hence $G \geqslant \mathrm{~m} K_{5}-e$, a contradiction.

- $\kappa(G)=2$ or 3

Connectivity-Three Case

We prove:
Lemma
If G is 3-connected in $\mathbf{o b}\left(\mathcal{C}^{*}\right)$, then $G \in\left\{K_{5}-e, K_{3,3}\right.$, Prism $\}$.

We use the following fact:

Lemma

If G is 3-connected and $|G|>4$, then G has an edge e such that G / e is also 3-connected.

- Such an edge is called contractible.

Connectivity-Three Case

Denote by $v_{x y}$ the vertex formed by contracting edge $x y$. Since G is minor-minimal $\notin \mathcal{C}^{*}$, there are two possibilities:

- Case 1: There exists a contractible edge $x y \in E(G)$ such that $v_{x y}$ is not apex in $G / x y$ (and hence, there exists an apex vertex $a \neq v_{x y}$ in $G / x y$).
- Case 2: For every contractible edge $x y \in E(G), v_{x y}$ is an apex vertex in $G / x y$.

By assuming that $G \in \mathbf{o b}\left(\mathcal{O}^{*}\right)-\left\{K_{5}-e, K_{3,3}\right.$, Prism, $\left.2 D\right\}$, we show that we reach a contradiction in each case, proving the Lemma.

Connectivity-Two Case: New Key Lemma

Lemma

Let (L, R) be a 2-separation of G over vertices $\{x, y\}$.
(1) If $L \notin \mathcal{C}$ and $R \notin \mathcal{C}$, then one of L or R is one of the four graphs: L_{1}, L_{2}, L_{3}, or L_{4}.

L_{1}

L_{2}

L_{3}

L_{4}
(2) If $L \in \mathcal{C}$, then $L=C_{3}$.

Connectivity-Two Case: Roadmap

- Case 1: There exists a 2 -separation such that both $L \notin \mathcal{C}$ and $R \notin \mathcal{C}$

- Case 2: For each 2-separation, $L=C_{3}$

- Case 2.1: There exists a 2-separation such that $L=C_{3}$ and $R-\{x, y\} \notin \mathcal{C}$
- Case 2.2: For each 2-separation, $L=C_{3}$ and $R-\{x, y\} \in \mathcal{C}$

Case 1

- Case 1: There exists a 2-separation such that both $L \notin \mathcal{C}$ and $R \notin \mathcal{C}$

We yield the T-family $\subseteq \mathbf{o b}\left(\mathcal{C}^{*}\right)$:

Case 1

- Case 1: There exists a 2 -separation such that both $L \notin \mathcal{C}$ and $R \notin \mathcal{C}$

We yield the T-family $\subseteq \mathbf{o b}\left(\mathcal{C}^{*}\right)$:

Case $1 \Longrightarrow$ T-family

Case $2.1 \mathrm{No} \Longrightarrow$ G-family

- Case 2: For each 2-separation, $L=C_{3}$

- Case 2.1: There exists a 2-separation such that $L=C_{3}$ and $R-\{x, y\} \notin \mathcal{C}$ This case does not yield any new graphs in $\mathbf{o b}\left(\mathcal{C}^{*}\right)$:

Case $2.1 \mathrm{No} \Longrightarrow$ G-family

- Case 2: For each 2-separation, $L=C_{3}$

- Case 2.1: There exists a 2-separation such that $L=C_{3}$ and $R-\{x, y\} \notin \mathcal{C}$

This case does not yield any new graphs in $\mathbf{o b}\left(\mathcal{C}^{*}\right)$:

Case $2.2 \Longrightarrow$ J-family

- Case 2: For each 2-separation, $L=P_{2}$ or C_{4}

- Case 2.1: For each 2-separation, $L=C_{3}$ and $R-\{x, y\} \in \mathcal{C}$

Case $2.2 \Longrightarrow$ J-family

- Case 2: For each 2-separation, $L=P_{2}$ or C_{4}

- Case 2.1: For each 2-separation, $L=C_{3}$ and $R-\{x, y\} \in \mathcal{C}$

We yield the J-family $\subseteq \mathbf{o b}\left(\mathcal{C}^{*}\right)$:

Case $2.2 \Longrightarrow$ J-family

Main Theorem

```
Theorem ( D. '13 )
ob}(\mp@subsup{C}{}{*})={\mp@subsup{K}{5}{}-e,\mp@subsup{K}{3,3}{},\mathrm{ Prism, 2D }}\cup\mathcal{T}\cup\mathcal{J
```

where:

- $\mathcal{T}:=\left\{T_{1}, \ldots, T_{16}\right\}$ (T-family)
- $\mathcal{J}:=\left\{J_{1}, J_{2}, J_{3}, J_{4}, J_{5}\right\}$ (J-family)

Apex-series-parallel graphs

- General Problem: Given: a minor-closed class \mathcal{C} and $\mathbf{o b}(\mathcal{C})$, find: $\mathbf{o b}\left(\mathcal{C}^{*}\right)$.
- Already very hard for $\mathcal{C}=\mathcal{P}=\{$ planar graphs $\}$, but what about $\mathcal{C}=\mathcal{S}=\{$ series-parallel graphs $\}$?
- ob(S^{*}) includes the following graphs:

Apex-series-parallel graphs

- General Problem: Given: a minor-closed class \mathcal{C} and $\mathbf{o b}(\mathcal{C})$, find: $\mathbf{o b}\left(\mathcal{C}^{*}\right)$.
- Already very hard for $\mathcal{C}=\mathcal{P}=\{$ planar graphs $\}$, but what about $\mathcal{C}=\mathcal{S}=\{$ series-parallel graphs $\}$?

Apex-series-parallel graphs

- General Problem: Given: a minor-closed class \mathcal{C} and $\mathbf{o b}(\mathcal{C})$, find: $\mathbf{o b}\left(\mathcal{C}^{*}\right)$.
- Already very hard for $\mathcal{C}=\mathcal{P}=\{$ planar graphs $\}$, but what about $\mathcal{C}=\mathcal{S}=\{$ series-parallel graphs $\}$?
- $\mathbf{o b}\left(\mathcal{S}^{*}\right)$ includes the following graphs:

Apex-series-parallel graphs

- General Problem: Given: a minor-closed class \mathcal{C} and $\mathbf{o b}(\mathcal{C})$, find: $\mathbf{o b}\left(\mathcal{C}^{*}\right)$.
- Already very hard for $\mathcal{C}=\mathcal{P}=\{$ planar graphs $\}$, but what about $\mathcal{C}=\mathcal{S}=\{$ series-parallel graphs $\}$?
- $\mathbf{o b}\left(\mathcal{S}^{*}\right)$ includes the following graphs:

The hunt for $\mathbf{o b}\left(\mathcal{S}^{*}\right)$

Observation 1

Let $G \in \mathbf{o b}\left(\mathcal{S}^{*}\right)$. Then $G \notin \mathcal{S}^{*}$, thus $G \notin \mathcal{O}^{*}$, and so $G \geqslant_{m} H$ for some $H \in \mathbf{o b}\left(\mathcal{O}^{*}\right)$.

Observation 2

If $G \in \mathbf{o b}\left(\mathcal{S}^{*}\right)$, then $\delta(G) \geqslant 3$.

Helpful Lemma

Lemma

Let H be a 2-connected minor of a 2-connected graph G with $\delta(G) \geqslant 3$. Let $x \in V(H)$ with $\operatorname{deg}_{H}(x)=2$, and let x_{1} and x_{2} be its two neighbors with $\operatorname{deg}_{H}\left(x_{i}\right) \geqslant 3$ for $i=1,2$. Then $G \succeq H^{\prime}$, where H^{\prime} is obtained from H by one of the following operations:

Helpful Theorem

Theorem (Kezdy, McGuiness '91)

Suppose that G is a 3 -connected graph containing a $K_{3,3}$-subdivision with branch vertices $\{\{a, b, c\},\{x, y, z\}\}$. Then at least one of the following must hold:

- $G \geqslant_{m} K_{5}$
- $\{\{a, b, c\}\}$ separates G such that x, y, and z are in separate components.
- $\{\{x, y, z\}\}$ separates G such that a, b, and c are in separate components.
- $G=V_{8}$

So suppose $G \in \mathbf{o b}\left(\mathcal{S}^{*}\right)$ is 3 -connected and contains a $K_{3,3}$-subdivision:

Summary

$$
\begin{array}{ccc}
\mathcal{C}=\{\text { cactus graphs }\} & \mathcal{O}=\{\text { outerplanar graphs }\} & \mathcal{S}=\{\text { series-parallel graphs }\} \\
\mathbf{o b}(\mathcal{C})=\left\{K_{4}-e\right\} & \mathbf{o b}(\mathcal{O})=\left\{K_{2,3}, K_{4}\right\} & \mathbf{o b}(\mathcal{S})=\left\{K_{4}\right\} \\
\mathcal{C}^{*}=\{\text { apex-cactus graphs }\} & \mathcal{O}^{*}=\{\text { apex-outerplanar graphs }\} & \mathcal{S}^{*}=\{\text { apex-series-parallel graphs }\}
\end{array}
$$

$$
\left|\mathbf{o b}\left(\mathcal{C}^{*}\right)\right|=25
$$

(D. '13)
$\left|\mathbf{o b}\left(\mathcal{O}^{*}\right)\right|=57$
(Ding, D. '10)
$\left|\mathbf{o b}\left(\mathcal{S}^{*}\right)\right| \geq 16$
(in progress...)

Open Questions

Questions

- For what other classes \mathcal{C} can the problem of finding $\mathbf{o b}\left(\mathcal{C}^{*}\right)$ be solved?
- Given \mathcal{C} and $\mathbf{o b}(\mathcal{C})$, can we give an upper bound on the sizes of the graphs in ob (C^{*})?

Thank You!

