
Obstructions of apex classes of graphs

Stan Dziobiak (Ole Miss)

joint work with:

Guoli Ding (LSU)

November 2, 2013

SD (Ole Miss) Obstructions of C∗ 2nd Miss. Discrete Math Workshop 1 / 60



Minors

◮ If e is an edge of G incident with two distinct vertices u and v, then the contraction
of e is the operation of deleting e and identifying u and v.

◮ Given graphs G and H , we say that H is a minor of G (or that G has an H-minor),
denoted by H 6m G if H can be obtained from G by any sequence of the following
operations:

◮ deleting an edge;
◮ deleting a vertex (and all of its incident edges);
◮ contracting an edge.

◮ Note: The order of operations of deletion and contraction to get a minor of a graph
is irrelevant.
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Minors example
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Kuratowski’s and Wagner’s Theorems

Theorem ( Kuratowski ’30, Wagner ’37 )

A graph G is planar if and only if G does not contain K5 or K3,3 as a minor.

SD (Ole Miss) Obstructions of C∗ 2nd Miss. Discrete Math Workshop 4 / 60



Minor-closed classes

◮ A class C of graphs is minor-closed if for every G ∈ C, if H 6m G then H ∈ C.

Example

◮ P := {planar graphs}

◮ {projective-planar graphs}

◮ {toroidal graphs}

◮ {G : G is embeddable in Σ}, where Σ is a fixed surface

◮ {linklessly embeddable graphs}

◮ {G : G has no H-minor}, where H is a fixed graph

◮ {G : G has no K4-minor} = {series-parallel graphs} = {G : tw(G) 6 2}

◮ {G : tw(G) 6 k}, where k is a fixed positive integer

◮ {G : pw(G) 6 k}, where k is a fixed positive integer

◮ O := {outerplanar graphs}

◮ O∗ := {apex-outerplanar graphs}
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Excluded minors, Obstruction sets

◮ Given a graph H and a minor-closed class C, we say that H is an excluded minor of
C, if H is a minor-minimal graph not in C (i.e. H /∈ C, but for all e ∈ E(H),
H\e ∈ C and H/e ∈ C).

◮ For a minor-closed class C, the set of excluded minors of C is called the obstruction
set of C, and is denoted by ob(C).

◮ Note: ob(C) completely characterizes C, because G /∈ C ⇐⇒ G contains one of the
graphs in ob(C) as a minor (excluded-minor characterization).
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Graph Minor Theorem

Theorem ( Robertson, Seymour ’83 - ’10 )

(GMT) For any minor-closed class C, ob(C) is finite.

Proof.

A series of 23 papers totalling several hundred pages published over 27 years...

Equivalently,

Theorem

In any infinite set of graphs, at least one graph is a minor of another.
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Importance of knowing ob(C)

Theorem ( Robertson, Seymour ’95 )

For any fixed graph H , there is an algorithm to determine whether a given n-vertex
graph has H as a minor in O(n3)-time.

Consequently,

Corollary

(Membership Testing) For any minor-closed class C, there is an algorithm to determine
whether a given n-vertex graph G belongs to C in O(n3)-time.
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Known excluded-minor characterizations

Example

◮ ob(planar graphs) = {K3,3,K5} (Kuratowski ’30, Wagner ’37)

◮ ob(series-parallel graphs) = {K4} = ob(graphs of tree-width 6 2) (Dirac ’52)

◮ |ob(projective-planar graphs)| = 35 (Archdeacon ’81)

◮ ob(graphs of tree-width 6 3) = {K5, V8, Oct, L5} (Arnborg, Corneil, Proskurowski
’90; Satyanarayana, Tung ’90)

◮ |ob(linklessly embeddable graphs)| = 7 (Robertson, Seymour, Thomas ’95)

◮ ob(outerplanar graphs) = {K2,3,K4} (Chartrand, Harary ’67)

◮ |ob(α-outerplanar graphs)| = 13 (Wargo ’96)

◮ |ob(apex-outerplanar graphs)| = 57 (Ding, D. ’10)
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Apex-outerplanar graphs

◮ A graph is outerplanar if it can be embedded in the plane (with no edges crossing)
with all vertices incident to one common face.

◮ A graph G is apex-outerplanar if there exists v ∈ V (G) such that G− v is
outerplanar. Such a vertex v is called an apex vertex of G.

◮ We let O and O∗ denote the classes of outerplanar and apex-outerplanar graphs,
respectively.

◮ Note: Since having loops or parallel edges has no impact on (apex-) outerplanarity,
all graphs in the remainder of the talk are assumed to be simple.
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General Framework

◮ Let C be a minor-closed class of graphs, and let C∗ be the class of graphs that
contain a vertex whose removal leaves a graph in C.

◮ Note: C ⊆ C∗, and C∗ is minor-closed

◮ General Problem:

Given: a minor-closed class C and ob(C)
Find: ob(C∗)

◮ Adler, Grohe, Kreutzer (’08) showed that this problem is computable...

◮ Already very hard for C = P = {planar graphs}.
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Motivation: Apex-planar graphs

Theorem ( Robertson, Seymour ’03 )

(Structure Theorem) If C is a proper minor-closed class of graphs, then every graph in C
is glued together in a tree-like fashion from graphs that can be nearly embedded in a
fixed surface.

Conjecture ( Hadwiger ’43 )

Graphs with no Kn-minor can be colored with at most (n− 1) colors.

◮ The case n = 5 is equivalent to the Four Color Theorem.

◮ The case n = 6 was proved by Robertson, Seymour, and Thomas ’93.

◮ RST proved that every minimal counterexample to Hadwiger’s for n = 6 is
apex-planar, so no counterexample exists (by 4CT).

Conjecture ( Jorgensen ’94 )

Every 6-connected graph with no K6-minor is apex planar.

◮ Implies Hadwiger’s for n = 6.

◮ Proved for large graphs by DeVos, Hegde, Kawarabayashi, Norin, Thomas, Wollan.
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Obstructions of apex-outerplanar graphs

◮ General Problem:
Given: a minor-closed class C and ob(C)
Find: ob(C∗)

◮ Already very hard for C = P = {planar graphs}.

◮ So what about C = O = {outerplanar graphs}?

◮ ob(O) = {K2,3,K4} (Chartrand, Harary ’67)

◮ Problem: Find: ob(O∗).
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Summary

C = {cactus graphs}

ob(C) = {K4 − e}

C∗ = {apex-cactus graphs}

|ob(C∗)| = 25

(D. ’13)

O = {outerplanar graphs}

ob(O) = {K2,3,K4}

O∗ = {apex-outerplanar graphs}

|ob(O∗)| = 57

(Ding, D. ’10)

S = {series-parallel graphs}

ob(S) = {K4}

S∗ = {apex-series-parallel graphs}

|ob(S∗)| ≥ 16

(in progress...)
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The Starting Lineup

◮ GOAL: To find ob(O∗)
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The Starting Lineup

◮ GOAL: To find ob(O∗)
◮ The following graphs all belong to ob(O∗).

◮ For each G above, we need to check:
G /∈ O∗ (i.e. G has an apex vertex)
∀e ∈ E(G),G\e ∈ O∗ and G/e ∈ O∗ (i.e. G\e and G/e don’t have an apex vertex)
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Minor-minimality of Q

Q
v

Q \ e

(Q \ e) - v

Q / e

w

(Q / e) - wQ - u

u
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Minor-minimality of Q

e

Q
v

Q \ e

(Q \ e) - v

Q / e

w

(Q / e) - w
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Connectivity is 2 or 3

Let G ∈ ob(O∗)− {K5,K3,3, Oct, Q, 2K4,K4|K2,3, 2K2,3}. Then

(1) G is planar

(2) G is 2-connected

(3) G is not 4-connected

Proof.

(1) G has no {K5, K3,3}-minor.

(2) Follows from the fact that G does not contain any of the graphs: 2K4, K4|K2,3,
2K2,3 as a minor.

(3) G is 4-connected =⇒ δ(G) > 4 =⇒ G >m K5 or G >m Oct (Halin, Jung ’63), a
contradiction.

◮ κ(G) = 2 or 3
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Connectivity-Three Case

We prove:

Lemma

If G is 3-connected in ob(O∗), then G ∈ {K5,K3,3, Oct, Q}.

We use the following fact:

Lemma

If G is 3-connected and |G| > 4, then G has an edge e such that G/e is also 3-connected.

◮ Such an edge is called contractible.
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Connectivity-Three Case

Denote by vxy the vertex formed by contracting edge xy. Since G is minor-minimal
/∈ O∗, there are two possibilities:

◮ Case 1: There exists a contractible edge xy ∈ E(G) such that vxy is not apex in
G/xy (and hence, there exists an apex vertex a 6= vxy in G/xy).

◮ Case 2: For every contractible edge xy ∈ E(G), vxy is an apex vertex in G/xy.

By assuming that G ∈ ob(O∗)− {K5,K3,3, Oct, Q, 2K4,K4|K2,3, 2K2,3}, we show that
we reach a contradiction in each case, proving the Lemma.
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Connectivity-Two Case
Let G be a graph and x, y ∈ V (G). A 2-separation of G over {x, y} is a pair of induced
subgraphs (L,R) of G such that:

(1) E(L) ∪E(R) = E(G);

(2) V (L) ∪ V (R) = V (G) and V (L) ∩ V (R) = {x, y};

(3) V (L)− V (R) 6= ∅ and V (R)− V (L) 6= ∅.

◮ Note: {x, y} is a 2-vertex-cut of G.
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Connectivity-Two Case: Key Lemma

Lemma

Let (L,R) be a 2-separation of G over vertices {x, y}.

(1) If L /∈ O and R /∈ O, then one of L or R is one of the five graphs: L1, L2, L3, L4,
or L5.

(2) If L ∈ O, then xy /∈ E(G) and L = P2 or C4.
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Connectivity-Two Case: Roadmap

◮ Case 1: There exists a 2-separation such that both L /∈ O and R /∈ O

◮ Case 2: For each 2-separation, L = P2 or C4

◮ Case 2.1: There exists a 2-separation such that L = C4

◮ Case 2.1.1: There exists a 2-separation such that L = C4 and R − {x, y} /∈ O
◮ Case 2.1.2: There exists a 2-separation such that L = C4 and for every such 2-separation

R − {x, y} ∈ O

◮ Case 2.2: For each 2-separation, L = P2

◮ Case 2.2.1: There exists a 2-separation such that L = P2 and R − {x, y} /∈ O
◮ Case 2.2.2: For each 2-separation, L = P2 and R − {x, y} ∈ O
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Case 1

◮ Case 1: There exists a 2-separation such that both L /∈ O and R /∈ O

We yield the T -family ⊆ ob(O∗):
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Case 1 =⇒ T-family
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Case 1 =⇒ T-family

T
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13
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Case 2.1.1 =⇒ G-family

◮ Case 2: For each 2-separation, L = P2 or C4

◮ Case 2.1: There exists a 2-separation such that L = C4

◮ Case 2.1.1: There exists a 2-separation such that L = C4 and R − {x, y} /∈ O

We yield the G-family ⊆ ob(O∗):
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Case 2.1.2 =⇒ J-family

◮ Case 2: For each 2-separation, L = P2 or C4

◮ Case 2.1: There exists a 2-separation such that L = C4

◮ Case 2.1.2: There exists a 2-separation such that L = C4 and for every such 2-separation
R − {x, y} ∈ O
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Case 2.1.2 =⇒ J-family
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Case 2.1.2 =⇒ J-family
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Case 2.2.1 =⇒ H-family

◮ Case 2: For each 2-separation, L = P2 or C4

◮ Case 2.2: For each 2-separation, L = P2

◮ Case 2.2.1: There exists a 2-separation such that L = P2 and R − {x, y} /∈ O

We yield the H-family ⊆ ob(O∗):
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Case 2.2.1 =⇒ H-family
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Case 2.2.2 =⇒ Q-family

◮ Case 2: For each 2-separation, L = P2 or C4

◮ Case 2.2: For each 2-separation, L = P2

◮ Case 2.2.2: For each 2-separation, L = P2 and R − {x, y} ∈ O

We yield the Q-family ⊆ ob(O∗):
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Case 2.2.2 =⇒ Q-family
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Main Theorem

Theorem ( Ding, D. ’10 )

ob(O∗) = {K5,K3,3, Oct, Q, 2K4,K4|K2,3, 2K2,3} ∪ T ∪ G ∪ J ∪H ∪Q

where:

◮ T := {T1, . . . , T30} (T -family)

◮ G := {G1, G2, G3, G4, G5} (G-family)

◮ J := {J1, J2, J3, J4, J5} (J -family)

◮ H := {H1,H2, H3,H4,H5} (H-family)

◮ Q := {Q1, Q2, Q3, Q4, Q5} (Q-family)
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Obstructions of apex-cactus graphs

◮ General Problem:
Given: a minor-closed class C and ob(C)
Find: ob(C∗)

◮ What about C = {cactus graphs}?

◮ ob(C) = {D := K4 − e} (El-Mallah, Colbourn ’88)

◮ Problem: Find: ob(C∗).
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The Starting Lineup

◮ GOAL: To find ob(C∗)
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The Starting Lineup

◮ GOAL: To find ob(C∗)
◮ The following graphs all belong to ob(C∗).

K - e K
5 3,3

2D

Prism

◮ For each G above, we need to check:
G /∈ C∗ (i.e. G has an apex vertex)
∀e ∈ E(G),G\e ∈ C∗ and G/e ∈ C∗ (i.e. G\e and G/e don’t have an apex vertex)
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Connectivity is 2 or 3

Let G ∈ ob(C∗)− {K5 − e,K3,3, P rism, 2D}. Then

(1) G is planar

(2) G is 2-connected

(3) G is not 4-connected

Proof.

(1) G has no {K5, K3,3}-minor, because it has no {K5 − e,K3,3}-minor

(2) Follows from the fact that G does not contain 2D as a minor.

(3) G is 4-connected =⇒ δ(G) > 4 =⇒ G >m K5 or G >m Oct (Halin, Jung ’63),
hence G >m K5 − e, a contradiction.

◮ κ(G) = 2 or 3
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Connectivity-Three Case

We prove:

Lemma

If G is 3-connected in ob(C∗), then G ∈ {K5 − e,K3,3, P rism}.

We use the following fact:

Lemma

If G is 3-connected and |G| > 4, then G has an edge e such that G/e is also 3-connected.

◮ Such an edge is called contractible.
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Connectivity-Three Case

Denote by vxy the vertex formed by contracting edge xy. Since G is minor-minimal
/∈ C∗, there are two possibilities:

◮ Case 1: There exists a contractible edge xy ∈ E(G) such that vxy is not apex in
G/xy (and hence, there exists an apex vertex a 6= vxy in G/xy).

◮ Case 2: For every contractible edge xy ∈ E(G), vxy is an apex vertex in G/xy.

By assuming that G ∈ ob(O∗)− {K5 − e,K3,3, P rism, 2D}, we show that we reach a
contradiction in each case, proving the Lemma.
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Connectivity-Two Case: New Key Lemma

Lemma

Let (L,R) be a 2-separation of G over vertices {x, y}.

(1) If L /∈ C and R /∈ C, then one of L or R is one of the four graphs: L1, L2, L3, or L4.

x

y

x x

x

y

y

y

L1 L2
L

3
L4

(2) If L ∈ C, then L = C3.

x

y

C3
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Connectivity-Two Case: Roadmap

◮ Case 1: There exists a 2-separation such that both L /∈ C and R /∈ C
x

y

x x

x

y

y

y

L1 L2
L

3
L4

◮ Case 2: For each 2-separation, L = C3

x

y

C3

◮ Case 2.1: There exists a 2-separation such that L = C3 and R− {x, y} /∈ C
◮ Case 2.2: For each 2-separation, L = C3 and R− {x, y} ∈ C
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Case 1

◮ Case 1: There exists a 2-separation such that both L /∈ C and R /∈ C
x

y

x x

x

y

y

y

L1 L2
L

3
L4

We yield the T -family ⊆ ob(C∗):
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Case 1

◮ Case 1: There exists a 2-separation such that both L /∈ C and R /∈ C
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Case 1 =⇒ T-family
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Case 2.1 No =⇒ G-family

◮ Case 2: For each 2-separation, L = C3

x

y

C3

◮ Case 2.1: There exists a 2-separation such that L = C3 and R− {x, y} /∈ C

This case does not yield any new graphs in ob(C∗):
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Case 2.2 =⇒ J-family

◮ Case 2: For each 2-separation, L = P2 or C4

x

y

C3

◮ Case 2.1: For each 2-separation, L = C3 and R− {x, y} ∈ C
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Case 2.2 =⇒ J-family

◮ Case 2: For each 2-separation, L = P2 or C4

x

y

C3

◮ Case 2.1: For each 2-separation, L = C3 and R− {x, y} ∈ C

We yield the J-family ⊆ ob(C∗):
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Case 2.2 =⇒ J-family

1
J =

J =
3

= J =
4

=

J =
5

= ==

J 2
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Main Theorem

Theorem ( D. ’13 )

ob(C∗) = {K5 − e,K3,3, P rism, 2D} ∪ T ∪ J

where:

◮ T := {T1, . . . , T16} (T -family)

◮ J := {J1, J2, J3, J4, J5} (J -family)
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Apex-series-parallel graphs

◮ General Problem: Given: a minor-closed class C and ob(C), find: ob(C∗).

◮ Already very hard for C = P = {planar graphs}, but what about
C = S = {series-parallel graphs}?

◮ ob(S∗) includes the following graphs:
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Apex-series-parallel graphs

◮ General Problem: Given: a minor-closed class C and ob(C), find: ob(C∗).

◮ Already very hard for C = P = {planar graphs}, but what about
C = S = {series-parallel graphs}?

◮ ob(S∗) includes the following graphs:
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The hunt for ob(S∗)

Observation 1

Let G ∈ ob(S∗). Then G /∈ S∗, thus G /∈ O∗, and so G >m H for some H ∈ ob(O∗).

Observation 2

If G ∈ ob(S∗), then δ(G) > 3.
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Helpful Lemma

Lemma

Let H be a 2-connected minor of a 2-connected graph G with δ(G) > 3. Let x ∈ V (H)
with degH(x) = 2, and let x1 and x2 be its two neighbors with degH(xi) > 3 for
i = 1, 2. Then G � H ′, where H ′ is obtained from H by one of the following operations:

x

x
1

x
2

H

x

x
1

x
2

H’

x

x
2

H’

x

x
1

x
2

H’
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Helpful Theorem

Theorem ( Kezdy, McGuiness ’91 )

Suppose that G is a 3-connected graph containing a K3,3-subdivision with branch
vertices {{a, b, c}, {x, y, z}}. Then at least one of the following must hold:

◮ G >m K5

◮ {{a, b, c}} separates G such that x, y, and z are in separate components.

◮ {{x, y, z}} separates G such that a, b, and c are in separate components.

◮ G = V8

So suppose G ∈ ob(S∗) is 3-connected and contains a K3,3-subdivision:

x z

a

C

b c

C Cy
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Summary

C = {cactus graphs}

ob(C) = {K4 − e}

C∗ = {apex-cactus graphs}

|ob(C∗)| = 25

(D. ’13)

O = {outerplanar graphs}

ob(O) = {K2,3,K4}

O∗ = {apex-outerplanar graphs}

|ob(O∗)| = 57

(Ding, D. ’10)

S = {series-parallel graphs}

ob(S) = {K4}

S∗ = {apex-series-parallel graphs}

|ob(S∗)| ≥ 16

(in progress...)
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Open Questions

Questions

◮ For what other classes C can the problem of finding ob(C∗) be solved?

◮ Given C and ob(C), can we give an upper bound on the sizes of the graphs in
ob(C∗)?
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Thank You!
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