Obstructions of apex classes of graphs

Stan Dziobiak (Ole Miss)

joint work with:

Guoli Ding (LSU)

November 2, 2013

Minors

- ▶ If *e* is an edge of *G* incident with two distinct vertices *u* and *v*, then the contraction of *e* is the operation of deleting *e* and identifying *u* and *v*.
- Given graphs G and H, we say that H is a minor of G (or that G has an H-minor), denoted by H ≤_m G if H can be obtained from G by any sequence of the following operations:
 - deleting an edge;
 - deleting a vertex (and all of its incident edges);
 - contracting an edge.

Note: The order of operations of deletion and contraction to get a minor of a graph is irrelevant.

Minors example

Kuratowski's and Wagner's Theorems

Theorem (Kuratowski '30, Wagner '37)

A graph G is planar if and only if G does not contain K_5 or $K_{3,3}$ as a minor.

Minor-closed classes

▶ A class C of graphs is minor-closed if for every $G \in C$, if $H \leq_m G$ then $H \in C$.

Example

- ▶ P := {planar graphs}
- {projective-planar graphs}
- {toroidal graphs}
- $\{G : G \text{ is embeddable in } \Sigma\}$, where Σ is a fixed surface
- {linklessly embeddable graphs}
- \blacktriangleright {G: G has no H-minor}, where H is a fixed graph
- ▶ ${G: G \text{ has no } K_4\text{-minor}} = {\text{series-parallel graphs}} = {G: \mathbf{tw}(G) \leq 2}$
- ▶ ${G : \mathbf{tw}(G) \leq k}$, where k is a fixed positive integer
- ▶ ${G : \mathbf{pw}(G) \leq k}$, where k is a fixed positive integer
- O := {outerplanar graphs}
- ▶ O^{*} := {apex-outerplanar graphs}

- ▶ Given a graph H and a minor-closed class C, we say that H is an excluded minor of C, if H is a minor-minimal graph not in C (i.e. $H \notin C$, but for all $e \in E(H)$, $H \setminus e \in C$ and $H/e \in C$).
- For a minor-closed class C, the set of excluded minors of C is called the obstruction set of C, and is denoted by ob(C).
- ▶ Note: ob(C) completely characterizes C, because $G \notin C \iff G$ contains one of the graphs in ob(C) as a minor (excluded-minor characterization).

Graph Minor Theorem

Theorem (Robertson, Seymour '83 - '10)

(GMT) For any minor-closed class C, **ob**(C) is finite.

Proof.

A series of 23 papers totalling several hundred pages published over 27 years...

Equivalently,

Theorem

In any infinite set of graphs, at least one graph is a minor of another.

Importance of knowing $\boldsymbol{ob}(\mathcal{C})$

Theorem (Robertson, Seymour '95)

For any fixed graph H, there is an algorithm to determine whether a given *n*-vertex graph has H as a minor in $O(n^3)$ -time.

Consequently,

Corollary

(Membership Testing) For any minor-closed class C, there is an algorithm to determine whether a given *n*-vertex graph G belongs to C in $O(n^3)$ -time.

Known excluded-minor characterizations

Example

- ob(planar graphs) = $\{K_{3,3}, K_5\}$ (Kuratowski '30, Wagner '37)
- ▶ ob(series-parallel graphs) = $\{K_4\}$ = ob(graphs of tree-width ≤ 2) (Dirac '52)
- ▶ |ob(projective-planar graphs)| = 35 (Archdeacon '81)
- ▶ ob(graphs of tree-width ≤ 3) = { K_5, V_8, Oct, L_5 } (Arnborg, Corneil, Proskurowski '90; Satyanarayana, Tung '90)
- ▶ |ob(linklessly embeddable graphs)| = 7 (Robertson, Seymour, Thomas '95)
- **ob**(outerplanar graphs) = $\{K_{2,3}, K_4\}$ (Chartrand, Harary '67)
- ▶ $|ob(\alpha$ -outerplanar graphs)| = 13 (Wargo '96)
- |ob(apex-outerplanar graphs)| = 57 (Ding, D. '10)

Apex-outerplanar graphs

- A graph is outerplanar if it can be embedded in the plane (with no edges crossing) with all vertices incident to one common face.
- ▶ A graph G is apex-outerplanar if there exists $v \in V(G)$ such that G v is outerplanar. Such a vertex v is called an apex vertex of G.

- ▶ We let *O* and *O*^{*} denote the classes of outerplanar and apex-outerplanar graphs, respectively.
- Note: Since having loops or parallel edges has no impact on (apex-) outerplanarity, all graphs in the remainder of the talk are assumed to be simple.

Apex-outerplanar graphs

- A graph is outerplanar if it can be embedded in the plane (with no edges crossing) with all vertices incident to one common face.
- ▶ A graph G is apex-outerplanar if there exists $v \in V(G)$ such that G v is outerplanar. Such a vertex v is called an apex vertex of G.

- ► We let O and O* denote the classes of outerplanar and apex-outerplanar graphs, respectively.
- Note: Since having loops or parallel edges has no impact on (apex-) outerplanarity, all graphs in the remainder of the talk are assumed to be simple.

General Framework

- ▶ Let C be a minor-closed class of graphs, and let C* be the class of graphs that contain a vertex whose removal leaves a graph in C.
- ▶ Note: $C \subseteq C^*$, and C^* is minor-closed

- ▶ General Problem: Given: a minor-closed class C and ob(C) Find: ob(C*)
- Adler, Grohe, Kreutzer ('08) showed that this problem is computable...
- Already very hard for $C = P = \{ planar graphs \}$.

SD (Ole Miss)

General Framework

- ▶ Let C be a minor-closed class of graphs, and let C* be the class of graphs that contain a vertex whose removal leaves a graph in C.
- ▶ Note: $C \subseteq C^*$, and C^* is minor-closed

- ▶ General Problem: Given: a minor-closed class C and ob(C) Find: ob(C*)
- Adler, Grohe, Kreutzer ('08) showed that this problem is computable...
- Already very hard for $C = P = \{ planar graphs \}$.

SD (Ole Miss)

General Framework

- ► Let C be a minor-closed class of graphs, and let C* be the class of graphs that contain a vertex whose removal leaves a graph in C.
- ▶ Note: $C \subseteq C^*$, and C^* is minor-closed

- ▶ General Problem: Given: a minor-closed class C and ob(C) Find: ob(C*)
- Adler, Grohe, Kreutzer ('08) showed that this problem is computable...
- Already very hard for $C = P = \{ planar graphs \}$.

Motivation: Apex-planar graphs

Theorem (Robertson, Seymour '03)

(Structure Theorem) If C is a proper minor-closed class of graphs, then every graph in C is glued together in a tree-like fashion from graphs that can be nearly embedded in a fixed surface.

Conjecture (Hadwiger '43)

Graphs with no K_n -minor can be colored with at most (n-1) colors.

- ▶ The case n = 5 is equivalent to the Four Color Theorem.
- The case n = 6 was proved by Robertson, Seymour, and Thomas '93.
- **RST** proved that every minimal counterexample to Hadwiger's for n = 6 is apex-planar, so no counterexample exists (by 4CT).

Conjecture (Jorgensen '94)

Every 6-connected graph with no K_6 -minor is apex planar.

▶ Implies Hadwiger's for n = 6.

▶ Proved for large graphs by DeVos, Hegde, Kawarabayashi, Norin, Thomas, Wollan.

Obstructions of apex-outerplanar graphs

- ▶ General Problem: Given: a minor-closed class C and ob(C) Find: ob(C*)
- Already very hard for $C = P = \{ planar graphs \}$.
- ► So what about C = O = {outerplanar graphs}?
- $ob(\mathcal{O}) = \{K_{2,3}, K_4\}$ (Chartrand, Harary '67)

▶ Problem: Find: $ob(\mathcal{O}^*)$.

Summary

The Starting Lineup
 GOAL: To find ob(𝒪*)

The Starting Lineup

- **GOAL:** To find $ob(\mathcal{O}^*)$
- ▶ The following graphs all belong to $ob(\mathcal{O}^*)$.

► For each *G* above, we need to check: $G \notin \mathcal{O}^*$ (i.e. *G* has an apex vertex) $\forall e \in E(G), G \setminus e \in \mathcal{O}^*$ and $G/e \in \mathcal{O}^*$ (i.e. $G \setminus e$ and G/e don't have an apex vertex) ${\rm Minor-minimality} \ {\rm of} \ Q$

${\rm Minor-minimality} \ {\rm of} \ Q$

Connectivity is 2 or 3

Let $G \in \mathbf{ob}(\mathcal{O}^*) - \{K_5, K_{3,3}, Oct, Q, 2K_4, K_4 | K_{2,3}, 2K_{2,3}\}$. Then

- (1) G is planar
- (2) G is 2-connected
- (3) G is not 4-connected

Proof.

- (1) G has no $\{K_5, K_{3,3}\}$ -minor.
- (2) Follows from the fact that G does not contain any of the graphs: $2K_4$, $K_4|_{K_{2,3}}$, $2K_{2,3}$ as a minor.
- (3) G is 4-connected $\Longrightarrow \delta(G) \ge 4 \Longrightarrow G \ge_{\mathsf{m}} K_5$ or $G \ge_{\mathsf{m}} Oct$ (Halin, Jung '63), a contradiction.

•
$$\kappa(G) = 2 \text{ or } 3$$

Connectivity-Three Case

We prove:

Lemma

If G is 3-connected in $ob(\mathcal{O}^*)$, then $G \in \{K_5, K_{3,3}, Oct, Q\}$.

We use the following fact:

Lemma If G is 3-connected and |G| > 4, then G has an edge e such that G/e is also 3-connected.

Such an edge is called contractible.

Denote by v_{xy} the vertex formed by contracting edge xy. Since G is minor-minimal $\notin \mathcal{O}^*$, there are two possibilities:

- ▶ Case 1: There exists a contractible edge $xy \in E(G)$ such that v_{xy} is not apex in G/xy (and hence, there exists an apex vertex $a \neq v_{xy}$ in G/xy).
- ▶ Case 2: For every contractible edge $xy \in E(G)$, v_{xy} is an apex vertex in G/xy.

By assuming that $G \in ob(\mathcal{O}^*) - \{K_5, K_{3,3}, Oct, Q, 2K_4, K_4 | K_{2,3}, 2K_{2,3}\}$, we show that we reach a contradiction in each case, proving the Lemma.

Connectivity-Two Case

Let G be a graph and $x, y \in V(G)$. A 2-separation of G over $\{x, y\}$ is a pair of induced subgraphs (L, R) of G such that:

- (1) $E(L) \cup E(R) = E(G);$
- (2) $V(L) \cup V(R) = V(G)$ and $V(L) \cap V(R) = \{x, y\};$
- (3) $V(L) V(R) \neq \emptyset$ and $V(R) V(L) \neq \emptyset$.

▶ Note: $\{x, y\}$ is a 2-vertex-cut of G.

Connectivity-Two Case: Key Lemma

Lemma

Let (L, R) be a 2-separation of G over vertices $\{x, y\}$.

(1) If $L \notin O$ and $R \notin O$, then one of L or R is one of the five graphs: L_1, L_2, L_3, L_4 , or L_5 .

Connectivity-Two Case: Roadmap

▶ Case 1: There exists a 2-separation such that both $L \notin O$ and $R \notin O$

▶ Case 2: For each 2-separation, $L = P_2$ or C_4

▶ Case 2.1: There exists a 2-separation such that $L = C_4$

- ▶ Case 2.1.1: There exists a 2-separation such that $L = C_4$ and $R \{x, y\} \notin O$
- Case 2.1.2: There exists a 2-separation such that $L = C_4$ and for every such 2-separation $R \{x, y\} \in \mathcal{O}$

▶ Case 2.2: For each 2-separation, $L = P_2$

▶ Case 2.2.1: There exists a 2-separation such that $L = P_2$ and $R - \{x, y\} \notin O$

• Case 2.2.2: For each 2-separation, $L = P_2$ and $R - \{x, y\} \in \mathcal{O}$

Case 1

▶ Case 1: There exists a 2-separation such that both $L \notin O$ and $R \notin O$

We yield the *T*-family $\subseteq \mathbf{ob}(\mathcal{O}^*)$:

Case 1

► Case 1: There exists a 2-separation such that both $L \notin \mathcal{O}$ and $R \notin \mathcal{O}$ $\overbrace{l_1}^{x} \qquad \overbrace{l_2}^{y} \qquad \overbrace{l_3}^{y} \qquad \overbrace{l_4}^{x} \qquad \overbrace{l_5}^{y}$

We yield the *T*-family $\subseteq \mathbf{ob}(\mathcal{O}^*)$:

Case $1 \Longrightarrow \mathsf{T}$ -family

Case $1 \Longrightarrow \mathsf{T}$ -family

SD (Ole Miss)

Obstructions of C^*

2nd Miss. Discrete Math Workshop 27 / 60

Case $2.1.1 \implies$ G-family

• Case 2: For each 2-separation, $L = P_2$ or C_4

- ▶ Case 2.1: There exists a 2-separation such that $L = C_4$
 - Case 2.1.1: There exists a 2-separation such that $L = C_4$ and $R \{x, y\} \notin \mathcal{O}$

Р,

We yield the *G*-family \subseteq **ob**(\mathcal{O}^*):

Case $2.1.1 \implies$ G-family

• Case 2: For each 2-separation, $L = P_2$ or C_4

- Case 2.1: There exists a 2-separation such that $L = C_4$
 - Case 2.1.1: There exists a 2-separation such that $L = C_4$ and $R \{x, y\} \notin \mathcal{O}$

Р,

We yield the *G*-family \subseteq **ob**(\mathcal{O}^*):

Case $2.1.1 \implies$ G-family

▶ Case 2: For each 2-separation, $L = P_2$ or C_4

• Case 2.1.1: There exists a 2-separation such that $L = C_4$ and $R - \{x, y\} \notin \mathcal{O}$

Р,

Case $2.1.2 \implies$ J-family

▶ Case 2: For each 2-separation, $L = P_2$ or C_4

- Case 2.1: There exists a 2-separation such that $L = C_4$
 - ▶ Case 2.1.2: There exists a 2-separation such that $L = C_4$ and for every such 2-separation $R \{x, y\} \in \mathcal{O}$

Case $2.1.2 \implies$ J-family

▶ Case 2: For each 2-separation, $L = P_2$ or C_4

- ▶ Case 2.1: There exists a 2-separation such that $L = C_4$
 - ▶ Case 2.1.2: There exists a 2-separation such that $L = C_4$ and for every such 2-separation $R \{x, y\} \in \mathcal{O}$

We yield the *J*-family \subseteq **ob**(\mathcal{O}^*):

Case $2.1.2 \implies$ J-family

Case $2.2.1 \implies$ H-family

▶ Case 2: For each 2-separation, $L = P_2$ or C_4

▶ Case 2.2: For each 2-separation, $L = P_2$

▶ Case 2.2.1: There exists a 2-separation such that $L = P_2$ and $R - \{x, y\} \notin O$

We yield the *H*-family \subseteq **ob**(\mathcal{O}^*):

Case $2.2.1 \implies$ H-family

▶ Case 2: For each 2-separation, $L = P_2$ or C_4

▶ Case 2.2: For each 2-separation, $L = P_2$

▶ Case 2.2.1: There exists a 2-separation such that $L = P_2$ and $R - \{x, y\} \notin O$

We yield the *H*-family \subseteq **ob**(\mathcal{O}^*):

Case $2.2.1 \Longrightarrow$ H-family

Case $2.2.2 \Longrightarrow$ Q-family

▶ Case 2: For each 2-separation, $L = P_2$ or C_4

▶ Case 2.2: For each 2-separation, $L = P_2$

• Case 2.2.2: For each 2-separation, $L = P_2$ and $R - \{x, y\} \in \mathcal{O}$

We yield the Q-family $\subseteq \mathbf{ob}(\mathcal{O}^*)$:

Case $2.2.2 \Longrightarrow$ Q-family

▶ Case 2: For each 2-separation, $L = P_2$ or C_4

▶ Case 2.2: For each 2-separation, $L = P_2$

• Case 2.2.2: For each 2-separation, $L = P_2$ and $R - \{x, y\} \in \mathcal{O}$

We yield the *Q*-family \subseteq **ob**(\mathcal{O}^*):

 $\mathsf{Case}\ 2.2.2 \Longrightarrow \mathsf{Q}\text{-family}$

Main Theorem

Theorem (Ding, D. '10)

 $\mathbf{ob}(\mathcal{O}^*) = \{K_5, K_{3,3}, Oct, Q, 2K_4, K_4 | K_{2,3}, 2K_{2,3}\} \cup \mathcal{T} \cup \mathcal{G} \cup \mathcal{J} \cup \mathcal{H} \cup \mathcal{Q}$

where:

- $\mathcal{T} := \{T_1, \dots, T_{30}\}$ (*T*-family)
- $\mathcal{G} := \{G_1, G_2, G_3, G_4, G_5\}$ (G-family)
- $\mathcal{J} := \{J_1, J_2, J_3, J_4, J_5\}$ (*J*-family)
- $\mathcal{H} := \{H_1, H_2, H_3, H_4, H_5\}$ (*H*-family)
- $Q := \{Q_1, Q_2, Q_3, Q_4, Q_5\}$ (Q-family)

Obstructions of apex-cactus graphs

- ▶ General Problem: Given: a minor-closed class C and ob(C) Find: ob(C*)
- What about $C = \{ cactus graphs \}$?

• $\mathbf{ob}(\mathcal{C}) = \{D := K_4 - e\}$ (El-Mallah, Colbourn '88)

▶ Problem: Find: $ob(C^*)$.

The Starting Lineup
 GOAL: To find ob(C*)

The Starting Lineup

- **GOAL:** To find $ob(C^*)$
- ▶ The following graphs all belong to $ob(C^*)$.

 For each G above, we need to check: G ∉ C* (i.e. G has an apex vertex) ∀e ∈ E(G), G\e ∈ C* and G/e ∈ C* (i.e. G\e and G/e don't have an apex vertex)

Connectivity is 2 or 3

Let $G \in ob(\mathcal{C}^*) - \{K_5 - e, K_{3,3}, Prism, 2D\}$. Then

- (1) G is planar
- (2) G is 2-connected
- (3) G is not 4-connected

Proof.

- (1) G has no $\{K_5, K_{3,3}\}$ -minor, because it has no $\{K_5 e, K_{3,3}\}$ -minor
- (2) Follows from the fact that G does not contain 2D as a minor.
- (3) G is 4-connected ⇒ δ(G) ≥ 4 ⇒ G ≥_m K₅ or G ≥_m Oct (Halin, Jung '63), hence G ≥_m K₅ − e, a contradiction.

• $\kappa(G) = 2 \text{ or } 3$

Connectivity-Three Case

We prove:

Lemma

If G is 3-connected in $\mathbf{ob}(\mathcal{C}^*)$, then $G \in \{K_5 - e, K_{3,3}, Prism\}$.

We use the following fact:

Lemma If G is 3-connected and |G| > 4, then G has an edge e such that G/e is also 3-connected.

Such an edge is called contractible.

Denote by v_{xy} the vertex formed by contracting edge xy. Since G is minor-minimal $\notin C^*$, there are two possibilities:

- ▶ Case 1: There exists a contractible edge $xy \in E(G)$ such that v_{xy} is not apex in G/xy (and hence, there exists an apex vertex $a \neq v_{xy}$ in G/xy).
- ▶ Case 2: For every contractible edge $xy \in E(G)$, v_{xy} is an apex vertex in G/xy.

By assuming that $G \in ob(\mathcal{O}^*) - \{K_5 - e, K_{3,3}, Prism, 2D\}$, we show that we reach a contradiction in each case, proving the Lemma.

Connectivity-Two Case: New Key Lemma

Lemma

Let (L, R) be a 2-separation of G over vertices $\{x, y\}$.

(1) If $L \notin C$ and $R \notin C$, then one of L or R is one of the four graphs: L_1, L_2, L_3 , or L_4 .

Connectivity-Two Case: Roadmap

Case 1

▶ Case 1: There exists a 2-separation such that both $L \notin C$ and $R \notin C$

We yield the *T*-family $\subseteq \mathbf{ob}(\mathcal{C}^*)$:

Case 1

 \blacktriangleright Case 1: There exists a 2-separation such that both $L \notin \mathcal{C}$ and $R \notin \mathcal{C}$

We yield the *T*-family $\subseteq \mathbf{ob}(\mathcal{C}^*)$:

 $\mathsf{Case}\; 1 \Longrightarrow \mathsf{T}\text{-}\mathsf{family}$

Case 2.1 No \implies G-family

▶ Case 2: For each 2-separation, $L = C_3$

▶ Case 2.1: There exists a 2-separation such that $L = C_3$ and $R - \{x, y\} \notin C$

This case does not yield any new graphs in $\mathsf{ob}(\mathcal{C}^*)$:

Case 2.1 No \implies G-family

• Case 2: For each 2-separation, $L = C_3$

▶ Case 2.1: There exists a 2-separation such that $L = C_3$ and $R - \{x, y\} \notin C$

This case does not yield any new graphs in $ob(\mathcal{C}^*)$:

Case $2.2 \implies$ J-family

▶ Case 2: For each 2-separation, $L = P_2$ or C_4

• Case 2.1: For each 2-separation, $L = C_3$ and $R - \{x, y\} \in C$

С.

Case $2.2 \implies$ J-family

▶ Case 2: For each 2-separation, $L = P_2$ or C_4

• Case 2.1: For each 2-separation, $L = C_3$ and $R - \{x, y\} \in C$

We yield the *J*-family \subseteq **ob**(\mathcal{C}^*):

Case $2.2 \implies$ J-family

Main Theorem

Theorem (D. '13)

 $\mathbf{ob}(\mathcal{C}^*) = \{K_5 - e, K_{3,3}, Prism, 2D\} \cup \mathcal{T} \cup \mathcal{J}$

where:

• $T := \{T_1, ..., T_{16}\}$ (*T*-family)

▶ $\mathcal{J} := \{J_1, J_2, J_3, J_4, J_5\}$ (*J*-family)

- ▶ General Problem: Given: a minor-closed class C and ob(C), find: $ob(C^*)$.
- ► Already very hard for C = P = {planar graphs}, but what about C = S = {series-parallel graphs}?
- **ob**(S^*) includes the following graphs:

- ▶ General Problem: Given: a minor-closed class C and ob(C), find: $ob(C^*)$.
- ► Already very hard for C = P = {planar graphs}, but what about C = S = {series-parallel graphs}?
- **ob**(S^*) includes the following graphs:

- ▶ General Problem: Given: a minor-closed class C and ob(C), find: $ob(C^*)$.
- ► Already very hard for C = P = {planar graphs}, but what about C = S = {series-parallel graphs}?
- $ob(S^*)$ includes the following graphs:

- ▶ General Problem: Given: a minor-closed class C and ob(C), find: $ob(C^*)$.
- ► Already very hard for C = P = {planar graphs}, but what about C = S = {series-parallel graphs}?
- $ob(S^*)$ includes the following graphs:

Observation 1

Let $G \in \mathbf{ob}(\mathcal{S}^*)$. Then $G \notin \mathcal{S}^*$, thus $G \notin \mathcal{O}^*$, and so $G \ge_m H$ for some $H \in \mathbf{ob}(\mathcal{O}^*)$.

Observation 2 If $G \in \mathbf{ob}(\mathcal{S}^*)$, then $\delta(G) \ge 3$.

Helpful Lemma

Lemma

Let H be a 2-connected minor of a 2-connected graph G with $\delta(G) \ge 3$. Let $x \in V(H)$ with $deg_H(x) = 2$, and let x_1 and x_2 be its two neighbors with $deg_H(x_i) \ge 3$ for i = 1, 2. Then $G \succeq H'$, where H' is obtained from H by one of the following operations:

Helpful Theorem

Theorem (Kezdy, McGuiness '91)

Suppose that G is a 3-connected graph containing a $K_{3,3}$ -subdivision with branch vertices $\{\{a, b, c\}, \{x, y, z\}\}$. Then at least one of the following must hold:

- $\blacktriangleright \ G \geqslant_m K_5$
- \blacktriangleright {{a, b, c}} separates G such that x, y, and z are in separate components.
- {{x, y, z}} separates G such that a, b, and c are in separate components.
 G = V₈

So suppose $G \in \mathbf{ob}(\mathcal{S}^*)$ is 3-connected and contains a $K_{3,3}$ -subdivision:

Summary

Open Questions

Questions

- For what other classes C can the problem of finding $ob(C^*)$ be solved?
- ► Given C and ob(C), can we give an upper bound on the sizes of the graphs in ob(C*)?

Thank You!