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Symmetric graphs

Automorphism of a graph is a permutation of its vertices which
preserves the adjacencies.

We de�ne the set Aut(X ) to be the set of all automorphisms of the
graph X .
It is not di�cult to see that Aut(X ) is in fact the group with
respect to composition of functions, and it is called the
automorphism group of X . We call a graph X vertex-transitive, if
for any two vertices u and v from V (X ), there exist an
automorphism ϕ ∈ Aut(X ) such that ϕ(u) = v .
A graph X is said to be edge-transitive, if for any two edges {u, v}
and {u′, v ′} there exist an automorphism ϕ ∈ Aut(X ) such that
ϕ({u, v}) = {u′, v ′}.
A graph X is said to be symmetric (or arc-transitive) if for any two
pairs of adjacent vertices (u, v) and (u′, v ′), there exist an
automorphism ϕ ∈ Aut(X ) such that ϕ(u) = u′ and ϕ(v) = v ′.
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Bicirculants

De�nition

A bicirculant is a graph admitting an automorphism with two cycles
of equal length in its cycle decomposition.

(Equivalently, if there
exist a (2, n) semiregular automorphism.)

The vertices of a bicirculant graph can be labeled by xi and yi ,
i ∈ Zn, and its edge set can be partitioned into three subsets

L = ∪i∈Zn{{xi , xi+l} | l ∈ L},

M = ∪i∈Zn{{xi , yi+m} | m ∈ M},

R = ∪i∈Zn{{yi , yi+r} | r ∈ R},

where L,M,R are subsets of Zn such that L = −L, R = −R ,
M 6= ∅ and 0 6∈ L∪R . Such bicirculant is denoted by BCn[L,M,R].
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Example
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BC6[{±1}, {0, 2, 4} {±1}]
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Isomorphic bicirculants

Let L,M and R be subsets of Zn such that L = −L, R = −R ,
M 6= ∅ and 0 6∈ L ∩ R . Then we have:

BCn[L,M,R] ∼= BCn[λL, λM + µ, λR] (λ ∈ Z∗n, µ ∈ Zn)

with the isomorphism φλ,µ given by:

φλ,µ(xi ) = xλi+µ and,

φλ,µ(yi ) = yλi .

Therefore, we can without loss of generality assume that 0 ∈ M.

Some graphs may have two (or more) di�erent bicirculant
representations, for example:

K6,6−6K2
∼= BC6[{±1}, {0, 2, 4} {±1}] ∼= BC6[ ∅, {0, 1, 2, 3, 4}, ∅ ].
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Cubic bicirculants I

The �rst step in the classi�cation of cubic symmetric bicirculants
was the classi�cation of symmetric generalized Petersen graphs,
obtained by Frucht, Graver and Watkins.

A generalized Petersen graph GP(n, k) is a cubic bicirculant
BCn[{±1}, {0}, {±k}].
Petersen graph is isomorphic to GP(5, 2).

The classi�cation of cubic symmetric bicirculants was later obtained
by Maru²i£ and Pisanski.
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Cubic bicirculants II

A connected cubic symmetric graph is a bicirculant if and only if it
is isomorphic to one of the following graphs:

the complete graph K4,

the complete bipartite graph K3,3,

the seven symmetric generalized Petersen graphs GP(4, 1),
GP(5, 2), GP(8, 3), GP(10, 2), GP(10, 3), GP(12, 5), and
GP(24, 5),

the Heawood graph F014A, and

a Cayley graph Cay(D2n, {b, ba, bar+1}) on a dihedral group
D2n = 〈a, b | an = b2 = baba = 1〉 of order 2n with respect to
the generating set {b, ba, bar+1}, where n ≥ 11 is odd and
r ∈ Z∗n is such that r2 + r + 1 ≡ 0 (mod n).
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Tetravalent bicirculants

The main step in the classi�cation of symmetric tetravalent
bicirculants is the classi�cation of symmetric rose window graphs,
obtained by Kovacs, Kutnar and Maru²i£.

The rose window graphs are natural generalization of the
generalized Petersen graphs, namely they are bicirculants
BCn[{±1}, {0, a}, {±r}]. (In the standard notation for rose window
graphs, this is equivalent to the graph Rn(a, r)).
The remaining cases were completed by Kovacs, Kuzman, Malni£
and Wilson.

Ademir Hujdurovi¢ Pentavalent symmetric bicirculants



Tetravalent bicirculants

The main step in the classi�cation of symmetric tetravalent
bicirculants is the classi�cation of symmetric rose window graphs,
obtained by Kovacs, Kutnar and Maru²i£.
The rose window graphs are natural generalization of the
generalized Petersen graphs, namely they are bicirculants
BCn[{±1}, {0, a}, {±r}]. (In the standard notation for rose window
graphs, this is equivalent to the graph Rn(a, r)).

The remaining cases were completed by Kovacs, Kuzman, Malni£
and Wilson.

Ademir Hujdurovi¢ Pentavalent symmetric bicirculants



Tetravalent bicirculants

The main step in the classi�cation of symmetric tetravalent
bicirculants is the classi�cation of symmetric rose window graphs,
obtained by Kovacs, Kutnar and Maru²i£.
The rose window graphs are natural generalization of the
generalized Petersen graphs, namely they are bicirculants
BCn[{±1}, {0, a}, {±r}]. (In the standard notation for rose window
graphs, this is equivalent to the graph Rn(a, r)).
The remaining cases were completed by Kovacs, Kuzman, Malni£
and Wilson.

Ademir Hujdurovi¢ Pentavalent symmetric bicirculants



Taba£jn graphs

The pentavalent generalization of the generalized Petersen graphs
are the so-called Taba£jn graphs, that is, a Taba£jn graph is a
bicirculant BCn[{±1}, {0, a, b}, {±r}]. (In the original notation for
Taba£jn graphs, this graph would be denoted by T (n; a, b; r)).

Theorem (Arroyo, Guillot, Hubard, Kutnar, O'Reilly and �parl,
2013)

The only arc-transitive Taba£jn graphs are the graphs T (3; 1, 2; 1),
T (6; 2, 4; 1) and T (6; 1, 5; 2).
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Pentavalent bicirculants

Multigraphs that can occur as quotient multigraphs of pentavalent
bicirculants with respect to a (2, n)-semiregular automorphism ρ.
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|M | = 1

Theorem (Kovacs, Malni£, Maru²i£, Miklavi£, 2009)

Let X = BCn[L,M,R] be a pentavalent bicirculant with |M| = 1.
Then X is not symmetric.
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|M | = 2

Theorem

Let X be a connected pentavalent symmetric bicirculant

X = BCn[L,M,R] with |M| = 2. Then either:

n = 6 and X ∼= BC6[{±1, 3}, {0, 2}, {±1, 3}] ∼= K6,6 − 6K2, or

n = 8 and X ∼= BC8[{±1, 4}, {0, 2}, {±3, 4}]

Figure: BC8[{±1, 4}, {0, 2}, {±3, 4}]
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|M | = 4

Theorem

Let X = BCn[L,M,R] be a pentavalent bicirculant with |M| = 4.
Then X is not symmetric.
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Core-free bicirculants

Recall that the core of a subgroup K in a group G (denoted by
coreG (K )) is the largest normal subgroup of G contained in K .

De�nition

A bicirculant X = BCn[L,M,R] of order 2n is said to be core-free if
there exists a (2, n)-semiregular automorphism ρ ∈ Aut(X ) giving
rise to the prescribed bicirculant structure of X such that the cyclic
subgroup 〈ρ〉 has trivial core in Aut(X ).

Theorem (Lucchini, 1998)

If H is a cyclic subgroup of a �nite group G with |H| ≥
√
|G |, then

H contains a non-trivial normal subgroup of G .
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Pentavalent arc-transitive graphs

Theorem (Guo and Feng, 2012)

Let X be a connected pentavalent (G , s)-transitive graph for some

G ≤ Aut(X ) and s ≥ 1. Let v ∈ V (X ). Then s ≤ 5 and one of the

following holds:

(i) For s = 1, Gv
∼= Z5,D10 or D20;

(ii) For s = 2, Gv
∼= F20, F20 × Z2, A5 or S5;

(iii) For s = 3, Gv
∼= F20 × Z4, A4 × A5, S4 × S5 or

(A4 × A5) o Z2 with A4 o Z2 = S4 and A5 o Z2 = S5;
(iv) For s = 4, Gv

∼= ASL(2, 4), AGL(2, 4), AΣL(2, 4) or

AΓL(2, 4);
(v) For s = 5, Gv

∼= Z6
2 o ΓL(2, 4).

Therefore, if X = BCn[L,M,R] is core-free pentavalent bicirculant,
which is (Aut(X ), 1)-transitive, then n < 40, and if it is
(Aut(X ), 2)-transitive then n < 240.
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|M | = 3

Lemma

Let X = BCn[L,M,R] be a pentavalent bicirculant with |M| = 3.
Then X is not 3-arc-transitive.

Lemma

Let X = BCn[L,M,R] be a core-free pentavalent symmetric

bicirculant with |M| = 3. Then

X ∼= BC3[{±1}, {0, 1, 2}, {±1}] ∼= K6.
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|M | = 3

Theorem

The only pentavalent symmetric bicirculants BCn[L,M,R] with
|M| = 3 are BC3[{±1}, {0, 1, 2}, {±1}], BC6[{±1}, {0, 2, 4}, {±1}]
and BC6[{±1}, {0, 1, 5}, {±2}]. Moreover, the �rst two are

2-arc-transitive and the third one is 1-arc-transitive.

Proof.

If X is not core-free, then there exist a normal subgroup N ≤ 〈ρ〉.
The quotient graph XN is a core-free pentavalent symmetric
bicirculant, and X is a regular Zm cover of XN , where |N| = m.
We then use the graph covering techniques to �nish the proof.
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|M | = 5

A pentavalent bicirculant BCn[∅,M, ∅] is a Cayley graph on
Dihedral group D2n. Such graphs are also called dihedrants.

Lemma (Maru²i£, 2006)

Let X be a connected pentavalent 2-arc-transitive dihedrant. Then

X is core-free if and only if X is isomorphic to the complete

bipartite graph minus a matching K6,6 − 6K2, or to the

points-hyperplanes incidence graph of projective space B(PG (2, 4)).

To �nd all core-free pentavalent symmetric dihedrants, it su�ces to
check the graphs of order 2n, where n < 40. With use of MAGMA,
we obtain that the only such graphs are those mentioned in the
previous lemma.
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check the graphs of order 2n, where n < 40. With use of MAGMA,
we obtain that the only such graphs are those mentioned in the
previous lemma.
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|M | = 5

Theorem

Let X be a connected pentavalent symmetric bipartite dihedrant.

Then X is isomorphic to one of the following graphs:

K6,6 − 6K2,

BC12[∅, {0, 1, 2, 4, 9}, ∅],
BC24[∅, {0, 1, 3, 11, 20}, ∅],
B(PG (2, 4)),

Cay(D2n, {b, ba, bar+1, bar
2+r+1, bar

3+r2+r+1}) where

D2n = 〈a, b | an = b2 = baba = 1〉 and r ∈ Z∗n such that

r4 + r3 + r2 + r + 1 ≡ 0 (mod n).
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Pentavalent symmetric bicirculants

Theorem

A connected pentavalent bicirculant BCn[L,M,R] is symmetric if

and only if it is isomorphic to one of the following graphs:

(i) |M| = 1: no graphs;

(ii) |M| = 2: BC6[{±1, 3}, {0, 2}, {±1, 3}] and
BC8[{±1, 4}, {0, 2}, {±3, 4}];

(iii) |M| = 3: K6, K6,6 − 6K2, BC6[{±1}, {0, 1, 5}, {±2}];
(iv) |M| = 4: no graphs

(v) |M| = 5: K6,6 − 6K2, BC12[ ∅, {0, 1, 2, 4, 9}, ∅ ],
BC24[ ∅, {0, 1, 3, 11, 20}, ∅ ], B(PG (2, 4)) or

Cay(D2n, {b, ba, bar+1, bar
2+r+1, bar

3+r2+r+1}) where

D2n = 〈a, b | an = b2 = baba = 1〉, and r ∈ Z∗n such that

r4 + r3 + r2 + r + 1 ≡ 0 (mod n).
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Thank you!!!
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