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The Kakeya problem

What is the smallest set in the plane that contains a unit line segment in
every direction?

Theorem (Besicovich, 1963)

The set can have arbitrarily small area.

ter (University c
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The Kakeya problem in F7

What is the smallest set S in the affine space IFg that contains a line in
every direction?

Theorem (Dvir, 2008)

S| > (7.

This proves the Finite field Kakeya conjecture (Wolfe, 1999) that
5] > cnlFg-

In 2 dimensions, |S| > w-

Best known upper bound |S| < w + %’ + O(1) (Cooper, 2006)
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A generalization

Instead of insisting that all directions are represented, what if we just insist
that we have r distinct lines. For simplicity we shall now work in projective

space PG(2,q).

Let P be the set of points, L the set of lines in PG(2, q), and
=|Pl=ILl=¢*+q+1.

Ui

What is  g(r) = RC[Em‘r;?l .

Note that by duality between points and lines

g(r):Sgg’wi‘ra:r‘{ﬁeﬁ:ﬂﬂS#@}.
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Unions of lines

Clearly g(r) > r(q+1) — (5) as each pair of lines intersects in one point,
and the smallest union occurs when all these intersections are distinct.

In the dual viewpoint we have equality g(s) =s(¢+ 1) — (;) iff no three
points of S are co-linear.

g(r)=r(qg+1)—(3) forr<qg+1.

Proof. Use a subset S of size r of a conic in PG(2, q). O
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Unions of lines

glr)<s < gIN-s)<N—-r &

There exists a point set of size N — s non-incident to a line set of size r.

Hence
N

g(r)

N/2

q+1

What is g(r) for g+ 1 < r < (q+1)(q+2)/27

77

0g+1 N/2 n T
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Symmetric differences

Instead of unions, what happens if we take symmetric differences?

Consider subsets of P as a binary vector in F}.
From now on we shall always assume ¢ is odd.

Define

>

to be the size of the smallest symmetric difference between r distinct lines
of PG(2,q).

f(r)=__min
RCL, |R|=r
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Symmetric differences

Define for R CL SCP,
P°(R ZE = {p € P : p lies in an odd number of ¢ € R},
teR
L(S)={le L:|(NnS]is odd}.

Then
e Pe: Ff — ]Fg and L°: IF%D — IF2£ are both linear maps.
o kerP° = {0, L}, ker £° = {0, P}.
e |P°(R)| and |£°(S)] are always even.
@ P° and L° are inverse isomorphisms between the even weight
subspaces of F} and F%.

Also

)= i PR = o i 1S
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Some simple observations

f(r)y=1f(N-r)

Proof. Each point lies in g 4 1 lines, and g+ 1 is even, so >, . ¢ = 0.
Thus |P°(R)| = |P°(L\ R)| and so f(r) = f(N — r). O
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Some simple observations

e r(g+2—r)<f(r)<rg+(rmod1l),
o f(r)=r(g+2—r)for0<r<gqg+1.

Proof. To minimize the symmetric difference between a set of lines, one
would like all intersection points between lines to be distinct. Then
|P°(R)| = r(g+2—r). This can be obtained by taking the dual of r
points on a conic if r < g+ 1.

It is clear that (1) = ¢+ 1 and f(2) = 2q, and f(x+y) < f(x) + f(y).
Hence f(r) < rq + (r mod 1). O

Paul Balister (University of Memphis) Minimal Symmetric Differences Nov 15, 2014 10 / 29



Some simple observations

f(r)=r(g+2—r)mod 4.

Proof. Consider adding the rth line. It must meet all previous r — 1 lines,
so the number of intersection points where it meets an odd number of
previous lines is x = r — 1 mod 2. But the symmetric difference then
increases by g + 1 — 2x = g + 3 — 2r mod 4. Thus the symmetric

difference is the same mod 4 as if all intersection points between pairs of
L]

lines are distinct.
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Some observations

f(r+1)—f(r)]<g—1for0O<r<N-1.

Proof. One can always add a line that meets P°(R) when R # (), L. Thus
f(r+1)<f(r)+q—1
The reverse inequality follows as f(r) = f(N — r). O

There are in fact several values of r for which |f(r+1) — f(r)] =q— 1.
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The middle range

For almost all values Cq3/2 < r < N — Cq®/2, it is possible to calculate
f(r) exactly. (However, there does not seem to be a nice way of describing
the answer). In particular, for these vales of r, f(r) is quite small.

f(r) < q for Cg*? < r < N — Cq%/2.
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The middle range

Fix an set S of points of even size. Then if R = £°(S) we have
S =P°(R). As f(r) is always even, determining f(r) for even r is
equivalent to the following:

Find the smallest even sized set S such that |[£°(S)| = r.

For odd r we have f(r) = f(N —r) and N — r is even.
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Clique decompositions

Given S, we can use the lines of the projective plane to edge-decompose
the complete graph Ks into cliques Kyns.

Indeed, each edge of Ks lines in a unique line £ € £ and this line joins all
pairs of points in /N S.

List the lines of £ as ¢1,...,¢y and define s; = |[¢; N S]|.
Let 1 be an edge-decomposition of Ks into cliques of size s;. Define

-3 [}

If |S| = s is even, and I is the clique decomposition corresponding to S.
Then |£°(S)| = s(q + 1) —2M().

Paul Balister (University of Memphis)
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Clique decompositions

Hence for a given size s of S, it is enough to:
@ Determine the possible values of M(I1) when [T is an arbitrary clique
decomposition of K.
@ Determine which of these clique decompositions can be realized in the
projective plane.
In practice, for s not too close to 0 or g + 1, one gets a solid range of
possible values for M(IM), subject to parity, from about s + O(y/s) to > s.
We also get a few explicitly determined values from s to s + O(y/s). From
these it is easy to determine the minimum |S| for which [£°(S)| = r is
solvable when r is not too close to 0 or N.
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Clique decompositions

.
s

s—1,2, ...
$s—2,2,2,...
§s—2,3,2,...
s—1i,2,...
s—1,3,...

2

M(IT) Clique decomposition

155t +s-1 <
22—+ ==

sz +2(s—2)—-1 I>.use as triangle
S +ils =)+ () -

= | ri(s—i) - (é) varies in steps of 2

As s; = s — i decreases, a range of values (in steps of 2) is possible. For
i > /s these ranges overlap and give a solid range of possible M(I).
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Clique decompositions

Definition
I is simple if all but one clique is either an edge or a triangle.

If there exists a clique decomposition of Ky with M(I) < %s(v/4s —3 —1)
then there exists a simple clique decomposition I with M(") = M(I).

As the interesting M(I) are O(s), we can reduce to the case of simple
clique decompositions.
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Realizing decompositions

Suppose we have a (simple) clique decomposition of K, can we realize is
with a set S of size s in PG(2,q)?

Construction:

Put s; points on a line at infinity £, say T C f4. Put the other
s’ = s — s1 points C on the conic y = x2, at (0,0), (1,1), (2,4),....

Then /¢ induces the clique K, and all lines through the remaining points
induce either Kos or K3s. The number of K3s is the number of lines
through two points of C that meet T.
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Realizing decompositions

Note that there is 1 line through points of C with slope 1, 1 with slope 2,
2 with slope 3, 2 with slope 4, ...

1122.5 .11
oo 0000000 0o 2

L S R B S o

oo o000 0000 o

If0<s<qg+1ands >max{(2s —3)/3,(2s —3) — (g + 1)} then any
simple decomposition 1 of Ks can be realized by a set of points in
PG(2,q).
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Calculating f(r)

If ris odd, calculate f(N — r) instead.

Loop through even s with gs > r.
If there is a simple clique decompositions of K with
r=s(qg+1)—2M(MM) and it can be realized in PG(2, g), return s.
Otherwise, if there is a simple clique decompositions of K with
r=s(q+1)—2M(M), return “undetermined”
If not every clique decomposition is equivalent to a simple one, return
“undetermined”.

Repeat
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Other results

The maximum of f(r) occurs at
r=(q+1)/2,(q+3)/2,N—(q+1)/2,N — (g +3)/2.

f2g—1)=q+1, f29)=2,f(2g+1)=qg—1.

3(g+1)/2<f(g+2)<2qg-2.

f(g+2)=2q9—2.
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f(qg+2)

Theorem (Bichara, Korchmaros, 1980)

Let R be a set of q + 2 lines in L, then there are at most 2 lines without
triple points.

Proof. Assume there are 3 lines without triple points. Wlog they are

x =0, y =0, and the line at infinity. But then each other point on these
lines intersects exactly one of the remaining g lines of R.

The remaining lines are a;(x — b;) with {a;} = {b;} = {a;b;j} =F;. But
[ers x = ~1 5o —1 = [Taiby = (TTa)(I1b) = (~1)(~1), 2

contradiction. O
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f(qg+2)

Theorem (Jamison (1977), Brouwer and Schrijver (1978))

Any blocking set in P contains at least 2q — 1 points.

Proof. Let B be a blocking set. Wlog (0,0) € B. Consider

o) = [I (ax+biy—1)
(ai,b)€B\{(0,0)}

Then for each (a, b) # (0,0) the line ua+ vb — 1 meets B\ {(0,0)}, so
f(a, b) = 0. But f(0,0) = +1.
Write f(x,y) = g(x,y) mod (x9 — x,y9 — y), with deg, g,deg, g < q.
Then xg is identically zero on IE%. Thus xg € (x9 — x,y9 — y). But
deg, g < g, s0 x9 — x | xg and so x971 — 1| g. Similarly y971 — 1 g.
But then (Xq_l - 1)(yq_1 - 1) | & SO degtotal f=> degtotal g2>2q—-2
Hence |B\ {(0,0)}| > 2g — 2 and |B| > 2qg — 1. O
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Suppose |R| = q + 2 and at least one line of R has no triple points. Then
|P°(R)| > 2q — 2.

Proof. Assume the line at infinity ¢, lies in R and has no triple points.
Then in the Affine plane, no two finite lines of R are parallel. As there are
g + 1 finite lines, every line in Fg must be parallel to a unique line of R.
Claim: P°(R) N IE*‘?7 blocks all lines except those of R that have no triple
point.

Proof. If £ ¢ R then ¢ meets an odd number (g + 1 — 1) of finite lines of
R and so has an odd point.

If £ € R and R has a triple point, then not all points on ¢ intersect another
element of R. Such a point is single, so odd.

Finally, we can assume there are at most 1 finite line of R without triple
points and this can be blocked by adding a single point to P°(R). Thus
|P°(R)|+1>2q—1. O]
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f(qg+2)

If every line of R has a triple point, the best we can do is
[Po(R) = $(a +1).

We know f(q +2) =2q — 2 for g < 13.

Paul Balister (University of Memphis)
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Other constructions

For r = 3q/2, f(r) is quite small due to the following construction (due to
J. di Paola):

Let QT C [F, be the set of non-zero quadratic residues, and Q= C Fy the
set of quadratic non-residues. Define

Q={[x:0:1]:x€ QTJuU{[l:x:0]: x € QT}U{[0:1:x] : —x € Q™ }.
Then 1£°(@)] = Q] = 3(g - 1)/2, s0 £(3(q — 1)/2) < 3(q — 1)/2.

Similar constructions show that f(r) is small near 2q,5¢q/2,3q,7q/2,...
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Open problems

e Calculating or just estimating g(r) for g+ 1 <r < (qg+1)(g+2)/2.

e Proving f(q+2) =2q — 2.

@ Determining at what point f(r) becomes O(q) as r increases.

@ Determining a (polynomial time) algorithm for calculating 7(r) for all
r.

@ Non-Desarguesian planes? (The f(r) is affected by the structure of

the plane.)

The End
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