An Erdős-Szekeres result for set partitions

Eric Gottlieb* and Michael Sheard Rhodes College

November 14, 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

- The Erdős-Szekeres result
- Analogous definitions and terminology for set partitions

- Our result
- An immediate corollary on sequences
- A refinement
- A conjecture refuted
- Future directions
- References

An early Ramsey-theoretic result

Theorem: [Erdős-Szekeres (1935)] Every $(n^2 - 2n + 2)$ -sequence of distinct numbers must have a monotonic *n*-subsequence. This is the least integer with this property.

An early Ramsey-theoretic result

Theorem: [Erdős-Szekeres (1935)] Every $(n^2 - 2n + 2)$ -sequence of distinct numbers must have a monotonic *n*-subsequence. This is the least integer with this property.

Example: n = 4. The 9-sequence 678345012 has no monotonic 4-subsequence, but every 10-sequence does, e.g., 5841629073.

Some things we will need:

Some things we will need:

► A measure of the size of a set partition (*E*-*S*: sequence length)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some things we will need:

► A measure of the size of a set partition (*E-S: sequence length*)

► A definition of subpartition (*E-S: subsequence*)

Some things we will need:

► A measure of the size of a set partition (*E*-*S*: sequence length)

- ► A definition of subpartition (*E-S: subsequence*)
- An orderly property (E-S: monotonicity)

Some things we will need:

- ► A measure of the size of a set partition (*E*-*S*: sequence length)
- ► A definition of subpartition (*E-S: subsequence*)
- An orderly property (E-S: monotonicity)
- A minimum f(n) such that set partitions of this size have an orderly subpartition of size n (E-S: n² − 2n + 2)

The weight of a set partition

The weight of a partition
$$B_1/\cdots/B_k$$
 is $\sum_{i=1}^k |B_i|$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The weight of a set partition

The weight of a partition
$$B_1/\cdots/B_k$$
 is $\sum_{i=1}^k |B_i|$.

Example: wt(156/2/378/4) = 8.

Subpartitions

If $\pi = B_1 / \cdots / B_k$ is a partition on $S \supseteq T$, let $\pi|_T = \{B_i \cap T \neq \emptyset\}.$

 μ is a *subpartition* of π if $\mu = \pi|_T$ for some $T \subseteq S$.

Subpartitions

If $\pi = B_1 / \cdots / B_k$ is a partition on $S \supseteq T$, let $\pi|_T = \{B_i \cap T \neq \emptyset\}.$

 μ is a subpartition of π if $\mu = \pi|_T$ for some $T \subseteq S$.

Example: 5/78/4 is a subpartition of 156/2/378/4.

A set partition is *free* if it has no subpartition of the form ac/b, where a < b < c.

Alternatively, a set partition is free if it can be written $B_1 / \cdots / B_k$ so that every element of B_i is less than every element of B_{i+1} for $1 \le i < k$.

A set partition is *free* if it has no subpartition of the form ac/b, where a < b < c.

Alternatively, a set partition is free if it can be written $B_1/\cdots/B_k$ so that every element of B_i is less than every element of B_{i+1} for $1 \le i < k$.

Example: 156/2/378/4 is not free, but 5/78/4 = 4/5/78 is.

A minimum function

Theorem: [G. & Sheard] A $\left\lfloor \frac{(n+1)^2}{4} \right\rfloor$ -partition must have a free *n*-subpartition. This is the least integer with this property.

A minimum function

Theorem: [G. & Sheard] A $\left\lfloor \frac{(n+1)^2}{4} \right\rfloor$ -partition must have a free *n*-subpartition. This is the least integer with this property.

Proof: Upper bound: induction on *n* using the fact that $f(n) = \lfloor \frac{(n+1)^2}{4} \rfloor$ satisfies f(n) = f(n-2) + n. Lower bound: modify of a partition with $\lceil \frac{n+1}{2} \rceil$ blocks of size $\lfloor \frac{n+1}{2} \rfloor$.

A minimum function

Example: n = 5. The 9-partition 18/26/3479/5 has a free 5-subpartition, but the 8-partition 147/258/36 does not.

(ロ)、(型)、(E)、(E)、 E) の(の)

Example: n = 5. The 9-partition 18/26/3479/5 has a free 5-subpartition, but the 8-partition 147/258/36 does not.

 $\left\{ \left\lfloor \frac{n^2}{4} \right\rfloor \right\}_0^\infty = 0, 0, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, \dots \text{ is A006260}$ in the OEIS. Dozens of items are counted by this sequence.

・ロト・日本・モート モー うへぐ

An (ordered) set partition $B_1/\cdots/B_k$ on $\{s_1 < \cdots < s_m\}$ corresponds to a surjective sequence $t_1 \cdots t_m$ on $\{1, \ldots, k\}$ via $t_r = j$ when $s_r \in B_j$.

Example: $5/78/4 \rightarrow 3122$ and $156/2/378/4 \rightarrow 12341133$.

A different orderly property for sequences

A sequence $t_1 \dots t_m$ is separated if i < j and $t_i = t_j$ implies $t_r = t_i$ for all $i \le r \le j$.

Alternatively, a sequence is separated if like terms appear consecutively.

A different orderly property for sequences

A sequence $t_1 \dots t_m$ is separated if i < j and $t_i = t_j$ implies $t_r = t_i$ for all $i \leq r \leq j$.

Alternatively, a sequence is separated if like terms appear consecutively.

Example: 3122 is separated, while 12341133 is not.

Our result for sequences

Theorem: [G. & Sheard] Every $\left\lfloor \frac{(n+1)^2}{4} \right\rfloor$ -sequence has a separated *n*-subsequence. This is the least integer with this property.

Our result for sequences

Theorem: [G. & Sheard] Every $\left\lfloor \frac{(n+1)^2}{4} \right\rfloor$ -sequence has a separated *n*-subsequence. This is the least integer with this property.

Example: n = 5. The 9-sequence

 $18/26/3479/5 \to 123342313$

has a separated 5-subsequence, but the 8-sequence

 $147/258/36 \rightarrow 12312312$

does not.

A refinement

Let
$$M(n,k) = \begin{cases} k(n-k+1) & 1 \le k \le (n+2)/2 \\ \left\lfloor \frac{(n+1)^2}{4} \right\rfloor & (n+2)/2 < k < n \\ k & k \ge n \end{cases}$$

Theorem: [G. & Sheard] Every M(n, k)-partition with exactly k blocks has a free *n*-subpartition. This is the least integer with this property.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A refinement

Let
$$M(n,k) = \begin{cases} k(n-k+1) & 1 \le k \le (n+2)/2 \\ \left\lfloor \frac{(n+1)^2}{4} \right\rfloor & (n+2)/2 < k < n \\ k & k \ge n \end{cases}$$

Theorem: [G. & Sheard] Every M(n, k)-partition with exactly k blocks has a free *n*-subpartition. This is the least integer with this property.

Theorem: [G. & Sheard] Every surjective M(n, k)-sequence on $\{1, \ldots, k\}$ has a separated *n*-subsequence. This is the least integer with this property.

M(7,k)

▲ロト ▲理 ▶ ▲ ヨ ▶ ▲ ヨ ■ ● の Q (?)

M(n,k)

・ロト・西ト・西ト・日・ 日・ シック

E-S: a sequence of distinct numbers is *extremal* if it is of length $n^2 - 2n + 1$ and it has no monotonic *n*-subsequence.

The number of extremal sequences of a given length is always a square (RSK).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A set partition is *extremal* if it is of weight $\left\lfloor \frac{1}{n} \right\rfloor$ has no free *n*-subpartition.

$$\left\lfloor \frac{(n+1)^2}{4} \right
floor - 1$$
 and it

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

п	1	2	3	4	5	6
f(n)	1	2	4	6	9	12
f(n) - 1	0	1	3	5	8	11
<i>t</i> (<i>n</i>)	1	1	1	4	9	121

A set partition is *extremal* if it is of weight $\left\lfloor \frac{1}{2} \right\rfloor$

$$\left\lfloor rac{(n+1)^2}{4}
ight
floor - 1$$
 and it

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

has no free *n*-subpartition.

п	1	2	3	4	5	6
f(n)	1	2	4	6	9	12
f(n) - 1	0	1	3	5	8	11
t(n)	1	1	1	4	9	121

Conjecture: The number of extremal partitions of a given weight is always a square.

A set partition is *extremal* if it is of weight

$$\left\lfloor \frac{(n+1)^2}{4} \right\rfloor - 1$$
 and it

has no free *n*-subpartition.

п	1	2	3	4	5	6
f(n)	1	2	4	6	9	12
f(n) - 1	0	1	3	5	8	11
t(n)	1	1	1	4	9	121

Conjecture: The number of extremal partitions of a given weight is always a square.

Sadly, $t(7) = 33^2 - 1$ and $t(8) = 298^2 - 16$ (Butler and Graham).

• Connections with other objects counted by $\left|\frac{(n+1)^2}{4}\right|$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Connections with other objects counted by $\left|\frac{(n+1)^2}{4}\right|$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Pigeonhole principle proof

• Connections with other objects counted by $\left| \frac{(n+1)^2}{4} \right|$

- Pigeonhole principle proof
- Complexity: does a k-partition have a separated n-subpartition?

• Connections with other objects counted by $\left| \frac{(n+1)^2}{4} \right|$

- Pigeonhole principle proof
- Complexity: does a k-partition have a separated n-subpartition?
- Geometry

Geometry

Figure : The free complex of 13/24.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Geometry

Figure : The monotonic complex of 563412.

(ロ)、(型)、(E)、(E)、 E) の(の)

References

- Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935).
- Frame, J. S., Robinson, G. de B. and Thrall, R. M.: The hook graphs of the symmetric group. Canad. J. Math. 6, 316–325 (1954).
- Knuth, D.: Permutations, matrices, and generalized Young tableaux. Pacific J. Math. 34, 709–727 (1970).
- Robinson, G. de B.: On the Representations of the Symmetric Group. Amer. J. Math. 60 (3): 745–760 (1938).
- Schensted, C.: Longest increasing and decreasing subsequences. Canad. J. Math. 13: 179–191 (1961).

Gratitude

Thanks for your attention!

