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Background
The Seymour Conjecture

Definition

The k -th power of a graph G is the graph Gk with vertex set
V (G) and edge set

E(Gk ) = {xy | dG(x , y) ≤ k} , (1)

where dG(x , y) is the length of a shortest path in G between the
vertices x and y .
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Background
The Seymour Conjecture

First proposed in 1974 by Paul Seymour, the conjecture is
stated as follows:

Conjecture (Seymour)
If G is a graph of order n with minimum degree

δ(G) ≥ k
k + 1

n,

then there exists a Hamiltonian cycle H of G such that Hk ⊆ G.
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Background
The Seymour Conjecture

The Seymour conjecture generalizes Dirac’s theorem
(k = 1) and Posa’s conjecture (k = 2).

Theorem (Dirac)
If G is a graph of order n and

δ(G) ≥ n
2
, (2)

then G is Hamiltonian.
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Background
The Seymour Conjecture

Seymour proposed the conjecture as a solution to a
known-to-be-difficult theorem on coloring:

Theorem (Hajnal-Szemeredi)
If G is a graph with maximum degree

∆(G) ≤ r , (3)

then G has an equitable (r + 1)-coloring.

An equitable coloring is a proper coloring where the size of
each color class differs by at most 1.
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The Seymour Conjecture

The Seymour conjecture and Hajnal-Szemeredi theorem
are complementary with respect to G.
If one applies to G, then the other applies to G’s
complement G.
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Background
The Seymour Conjecture

A complementary form of the Hajnal-Szemeredi theorem may
be stated as follows:

Lemma (Complementary Hajnal-Szemeredi)

If G is a graph of order n = sk and δ(G) ≥ k−1
k n, then G

contains bsc vertex-disjoint cliques of order k.

A clique of order k , or k -clique, is a complete subgraph Kk .
s is the number of colors (r + 1) from the Hajnal-Szemeredi
theorem.
There are s independent sets in G.
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Background
State of the Art

The best known results on the Seymour conjecture are
vague approximations.

Theorem (Komlos-Sarkozy-Szemeredi)

For any p > 0 and positive integer k there is an n0 = n0(p, k)
such that, if n ≥ n0 and minimal degree

δ(G) ≥
(

k
k + 1

+ p
)

n, (4)

then G contains the k-th power of a Hamiltonian cycle.

Note: n0 is on the order of 2100.
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Background
State of the Art

The best known results on the Seymour conjecture are
vague approximations.

Theorem (Faudree-Gould-Jacobson-Schelp)

For any ε > 0 and positive integer k there is a C(ε, k) such that,
if G is of order n with minimal degree

δ(G) ≥
(

2k − 1
2k

+ ε

)
n + C(ε, k), (4)

then G contains the k-th power of a Hamiltonian cycle.

Note: A weaker bound than Seymour, and not even tight.
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Background
Proposed Conjecture

Goal is to prove following weaker version of the Seymour
conjecture.
Possibly extend results to full conjecture or other areas.

Conjecture
If G is a graph of order n ≥ 2k + 1 and

δ(G) ≥ 2k − 1
2k

n, (5)

then there exists a Hamiltonian cycle H of G such that Hk ⊆ G.
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Proposed Approach

The general idea is to employ the complementary
Hajnal-Szemeredi lemma and analyze the connections
between the cliques.
However, the number of vertices and edges is problematic;
a reduction to a simpler graph is desired.
The level of detail is too fine; we wish to take a coarser
look.
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Definitions
Generalizing Vertex and Edge Definitions

Concepts including vertices and edges are generalized to
larger structures.
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Definitions
Generalizing Vertex and Edge Definitions

Concepts including vertices and edges are generalized to
larger structures.

Definition
Two vertex disjoint cliques C1 and C2 are defined to be
(k ,m)-path-adjacent if there exists a Pk

m subgraph P such that
the first dm/2e vertices of P are elements of V (C1) and the last
bm/2c vertices are elements of V (C2).

The 5-cliques are
(2,4)-path-adjacent.
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Definitions
Generalizing Vertex and Edge Definitions

Concepts including vertices and edges are generalized to
larger structures.

Definition
A k -clique set of a graph G is a maximally-sized set Ck (G)
comprised of vertex disjoint cliques in G of order k . Note that a
2-clique set of G is a maximum matching.

A k -clique set can be computed in polynomial time
provided that δ(G) ≥ k−1

k n.



16/26

Background Proposed Approach Summary

Clique Reductions
Definition

The clique reduction is the primary tool in (hopefully) deriving
proof to the proposed conjecture.

Definition
A (k1, k2,m)-clique reduction of a graph G of order n = sk1 is a
graph R(G) with vertex set V (R(G)) = Ck1(G), i.e. it has a
vertex for each clique in Ck1(G), and edge set

E(R(G)) =
{

xy |x , y ∈ Ck1(G) and are (k2,m)-path-adjacent
}
.

(6)

The clique reduction and associated definitions provide a
generalization of vertices and edges in a sense that
preserves topology (don’t quote me on this for rigor).



17/26

Background Proposed Approach Summary

Clique Reductions
Notes

The reduction is not necessarily unique; it relies upon the
underlying k -clique set.
Choice of parameters significantly alters reduced graph.
The (1,1,2)-reduction of G is G.
The (k + 1, k ,2k)-reduction is closely related to Seymour’s
conjecture..
We focus on the (2k , k ,2k)-clique-reduction.
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Clique Reductions
Example

A (3,2,4)-reduction of a Hamiltonian graph is shown below.

Since this reduction is unique, we can deduce that there is
no second power of a Hamiltonian path or cycle in the
graph.
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Incomplete Pigeonhole Principle

Lemma

If one has n − 2 containers arranged in a line and at least k
k+1n

items that must be placed in distinct containers with n ≥ k + 3,
then there exists an unbroken sequence of k + 1 items.

Mainly useful for proving that structures similar to the one
below exist.
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Main Results

General intuition: A Hamiltonian cycle in the reduced graph can
be expanded into the k -th power of a cycle in the original graph.

Theorem
If a graph G has n = 2sk vertices, with s ≥ 3 and k ≥ 2, and

δ(G) ≥ 2k − 1
2k

n, (7)

then the (2k , k ,2k)-clique reduction R(G) is a Dirac graph.

A Dirac graph is a graph with minimum degree δ(G) ≥ n/2.
A Dirac approximation for this reduction can be computed
in polynomial time.
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Main Results

General intuition: A Hamiltonian cycle in the reduced graph can
be expanded into the k -th power of a cycle in the original graph.

Conjecture
If a graph G has n = 2sk vertices, with s ≥ 3 and k ≥ 2, and

δ(G) ≥ 2k − 1
2k

n, (7)

then there exists a Hamiltonian cycle of the (2k , k ,2k)-clique
reduction that corresponds to a Hamiltonian cycle H of G such
that Hk ⊆ G.

Final piece for proving proposed conjecture.
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Potential Algorithm
Finding Hamiltonian Cycles

The proposed lemmas and conjectures hint at the possible
existence of a polynomial time algorithm.

Possibility hinges on existence of algorithm for Dirac
graphs.
Examination of the (2,1,2)-reduction is required – not
guaranteed to be Dirac.

Lemma
If G is a Dirac graph with n = 2s vertices, then there exists a
Hamiltonian (2,1,2)-clique reduction.
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Potential Algorithm
Example

Suppose we start with a (10,5,10)-reduction.
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Potential Algorithm
Example

We take a (2,1,2)-reduction.
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Potential Algorithm
Example

We find the Hamiltonian cycle in the smallest reduction . . .
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Potential Algorithm
Example

. . . and we expand the cycle.
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Potential Algorithm
Example

. . . and we expand the cycle.
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Conjecture
If G is a Dirac graph with n = 2s vertices, then there exists an
Ore (2,1,2)-clique reduction.

Reduction not even guaranteed to be Hamiltonian, but
simple transformations can correct.
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Summary

Future Outlook


	Background
	The Seymour Conjecture
	State of the Art

	Proposed Approach
	Definitions
	Lemmas, Conjectures, and Theorems - Oh My!
	Algorithm


