# On the Edge Spectrum of Saturation Number for Paths and Stars

Ali Dogan

University of Memphis

adogan@memphis.edu

Joint work with Paul Balister

# 4th Annual Mississippi Discrete Mathematics Workshop Nov 14–15, 2015

## 1 Introduction

- Definitions
- Known Results

# 2 Edge Spectrum of Pathsa Sketch of the Proof

표 문 문

## Definition (H-saturated graphs)

A graph G is H-saturated if

- H is not a subgraph of G,
- for any edge  $e \in E(\overline{G})$  the graph G + e contains a subgraph isomorphic to H.

A classical question in extremal graph theory is:

æ

イロト イヨト イヨト イヨト

A classical question in extremal graph theory is:

## Question

What is the **maximum number of edges** in an H-saturated graph on n vertices?

.∋...>

A classical question in extremal graph theory is:

### Question

What is the **maximum number of edges** in an H-saturated graph on n vertices?

## Definition (Extremal Number )

The **extremal number** ex(n; H) defined as

 $ex(n; H) = \max\{|E(G)| : |V(G)| = n \text{ and } G \text{ is } H\text{-saturated}\}$ 

and the set of graphs with extremal number by  $E_X(n; H)$ .

- < A > < B > < B >

## Theorem (Mantel, 1907)

$$ex(n; K_3) \le \frac{n^2}{4}$$
  
 $Ex(n; K_3) = \{K_{\frac{n}{2}, \frac{n}{2}}\}$ 

and

The generalization of this theorem to cliques of size 
$$p$$
 is

æ

イロト イヨト イヨト イヨト

## Theorem (Turán, 1941)

$$ex(n; K_p) \leq (1 - \frac{1}{p-1})\frac{n^2}{2}$$

and

$$Ex(n; K_p) = \{T(n, p-1)\}$$

where T(n, p-1) is called the Turán Graph which is a (p-1)-partite graph with all parts having size as close as possible.

- < 🗇 > < E > < E >

# Definitions

One more question.

2

イロト イヨト イヨト イヨト

One more question.

## Question

What is the **minimum number of edges** in an H-saturated graph on n vertices?

.∋...>

One more question.

## Question

What is the **minimum number of edges** in an H-saturated graph on n vertices?

## Definition (Saturation Number )

The saturation number sat(n; H) defined as

$$sat(n; H) = min\{|E(G)| : |V(G)| = n \text{ and } G \text{ is } H\text{-saturated}\},\$$

and denote the set of graphs with saturation number by Sat(n; H).

One more question.

## Question

What is the **minimum number of edges** in an H-saturated graph on n vertices?

## Definition (Saturation Number)

The saturation number sat(n; H) defined as

 $sat(n; H) = min\{|E(G)| : |V(G)| = n \text{ and } G \text{ is } H\text{-saturated}\},\$ 

and denote the set of graphs with saturation number by Sat(n; H).

Let SAT(n; H) be the set of all H-saturated graphs of order n.

- 4 回 ト 4 ヨ ト - 4 ヨ ト -

Theorem (Erdős, Hajnal, and Moon, 1964)

For  $n \ge p - 2$ ,

$$\operatorname{sat}(n; K_p) = \binom{p-2}{2} + (n-p+2)(p-2)$$

and

$$Sat(n; K_p) = \{K_{p-2} + \bar{K}_{n-p+2}\}$$

where + denotes the join operation of graphs.

In particular,  $sat(n; K_3) = n - 1$ .

æ

|山田 | 小田 | (田 )

- $K_{1,k}$ ,  $P_k$  and Matchings studied by Kászonyi and Zs. Tuza, 1986
- B<sub>p</sub> studied by Chen, Faudree, Gould, 2008
- tK<sub>p</sub> studied by Faudree, Ferrara, Gould, Jacobson, 2009
- Trees studied by J. Faudree, R. Faudree, Gould, Jacobson, 2009
- Cycles:  $sat(n; C_n) = \frac{3n+1}{2}$ , but exact value of  $sat(n; C_k)$  is not known.  $sat(n; C_k) = n + \frac{n}{k} + O(k^2 + \frac{n}{k^2})$ , by Füredi, Kim, 2011
- A Survey of Minimum Saturated Graphs J. Faudree, R. Faudree, Schmitt, 2011

### Theorem (Kászonyi and Zs. Tuza, 1986)

Let 
$$a_k = \begin{cases} 3.2^{p-1} - 2, & \text{if } k = 2p \\ 4.2^{p-1} - 2, & \text{if } k = 2p + 1. \end{cases}$$
 Then for  $n \ge a_k$  and  $k \ge 6$ ,  
 $sat(n; P_k) = n - \left\lfloor \frac{n}{a_k} \right\rfloor$  and every graph in  $Sat(n; P_k)$  consists of a forest with  $\left\lfloor \frac{n}{a_k} \right\rfloor$  components.

For k = 2p + 2, forest consist of binary tree  $T_k$  with root degree 3 and depth p, and for k = 2p + 1, it is a binary tree with double root both of which have degree 3 and depth p.

## Theorem (Kászonyi and Zs. Tuza, 1986)

Let  $K_{1,k}$  denote a star on k + 1 vertices. Then,

$$sat(n; K_{1,k}) = \begin{cases} \binom{k}{2} + \binom{n-k}{2} & \text{if } k+1 \le n \le \frac{3k}{2} \\ \left\lceil n \frac{(k-1)}{2} - \frac{k^2}{8} \right\rceil & \text{if } \frac{3k}{2} \le n \end{cases}$$

and

wher

$$Sat(n; K_{1,k}) = \begin{cases} \{K_k \cup K_{n-k}\} & \text{if } k+1 \le n \le \frac{3k}{2} \\ \left\{G' \cup K_{\lfloor \frac{k+1}{2} \rfloor}\right\} & \text{if } \frac{3k}{2} \le n \end{cases}$$
  
re G' is a  $(k-1)$ -regular graph on  $n - \lfloor \frac{k+1}{2} \rfloor$  vertices.

æ

For 
$$n \ge k+1$$
,  $e_{x}(n; K_{1,k}) = \left\lfloor n \frac{(k-1)}{2} \right\rfloor$ , and the extremal graphs are  

$$E_{x}(n; K_{1,k}) = \begin{cases} \{(k-1)\text{-regular graph on } n \text{ vertices} \} & \text{if } n \text{ is even} \\ \{(k-1)\text{-regular graph on } n \text{ vertices} \} & \text{or } k \text{ is odd} \\ \\ \{ \text{The graph with degree sequence} \\ k-1, k-1, ..., k-1, k-2 \end{cases} & \text{otherwise.} \end{cases}$$

2

イロト イ団ト イヨト イヨト

In 1959, P. Erdős and T. Gallai determined the extremal number  $ex(n; P_k)$  as well as the corresponding extremal graphs. We state the general version of the theorem here by Faudree and Schelp.

#### Theorem

For 
$$n = l(k-1) + r$$
,  
 $ex(n; P_k) \le l\binom{k-1}{2} + \binom{r}{2}$  with equality if and only if G is either  
(i)  $\left(\bigcup_{i=1}^{l} K_{k-1}\right) \cup K_r$  or  
(ii)  $\left(\bigcup_{i=1}^{l-t-1} K_{k-1}\right) \cup (K_{(k-2)/2} + \bar{K}_{(k+2)/2+t(k-1)+r})$  for some t,  
 $0 \le t < l$ , when k is even,  $l > 0$ , and  $r = k/2$  or  $(k-2)/2$ .

In 77 Kopylov determined  $ex(n; P_k)$  for connected graphs. Later on, Balister, Győri, Lehel, and Schelp obtained  $ex(n; P_k)$  and also gave  $Ex(n; P_k)$ .

## Theorem (Balister, Győri, Lehel, and Schelp, 2008)

If G is connected, then

$$ex(n; P_k) \leq \max\{\binom{k-2}{2} + (n-k+2), \binom{\left\lceil \frac{k}{2} \right\rceil}{2} + \lfloor \frac{k-2}{2} \rfloor (n - \lceil \frac{k}{2} \rceil)\}.$$

If equality occurs then G is either  $G_{n,k,1}$  or  $G_{n,k,\lfloor (k-2)/2 \rfloor}$ .

Where  $G_{n,k,s} = K_s + (K_{k-2s-1} \cup \overline{K}_{n-k+s+1})$ , for k > 2s + 1.

## Definition (The Edge Spectrum for H-saturated Graphs)

The set of all values of m, where  $sat(n; H) \le m \le ex(n; H)$ , for which there exists an H-saturated graph on n vertices and m edges is called the **edge spectrum** for H-saturated graphs.

## Theorem (Barefoot, Casey, Fisher, and Fraughnaugh, 1995)

There is a K<sub>3</sub>-saturated graph with n vertices and m edges if and only if  $2n-5 \le m \le \frac{(n-1)^2}{4} + 1$  or m = k(n-k) for some positive integer k.

## Theorem (Barefoot, Casey, Fisher, and Fraughnaugh, 1995)

There is a K<sub>3</sub>-saturated graph with n vertices and m edges if and only if  $2n-5 \le m \le \frac{(n-1)^2}{4} + 1$  or m = k(n-k) for some positive integer k.

## Theorem (Kinnari, Faudree, Gould and Sidorowicz, 2013)

There is a  $K_p$ -saturated graph with n vertices and m edges if and only if either

$$(p-1)\left(n-\frac{p}{2}\right)-2 \le m \le \frac{(p-2)n^2-2n+r(r+2)-r(p-1)}{2(p-1)}+1$$

or m = |E(G)| for some complete (p - 1)-partite graph G on n vertices.

Recall  $sat(n; K_p) = \binom{p-2}{2} + (n-p+2)(p-2)$  by (EHM, 1964)and  $ex(n; K_p) \le (1 - \frac{1}{p-1})\frac{n^2}{2}$  by (Turan, 1941).

イロト イ団ト イヨト イヨト 三日

## Theorem (Gould, Tang, Wei, Zhang, 2012)

There are  $P_5$ -saturated graphs with n vertices and m edges provided  $sat(n; P_5) \le m \le ex(n; P_5)$ , except in the cases

$$m \in \begin{cases} \left\{\frac{3n-5}{2}\right\} & \text{if } n \equiv 3 \pmod{4}, \\ \left\{\frac{3n}{2}-3, \frac{3n}{2}-2, \frac{3n}{2}-1\right\} & \text{if } n \equiv 0 \pmod{4}. \end{cases}$$

Note that  $sat(n; P_5) = \frac{5n-4}{6}$  by (KT, 1986) and  $ex(n; P_5) = \frac{3n}{2}$  by (EG, 1959).

## Theorem (Gould, Tang, Wei, Zhang, 2012)

For  $n \ge 10$  and  $(n, m) \ne (11, 14)$ , there are  $P_6$ -saturated graphs with n vertices and m edges provided sat $(n; P_6) \le m \le ex(n; P_6)$ , except in the cases

$$m \in \begin{cases} \{2n-4, 2n-2, 2n-1\} & \text{if } n \equiv 0 \pmod{5}, \\ \{2n-4\} & \text{if } n \equiv 2, 4 \pmod{5}. \end{cases}$$

Note that  $sat(n; P_6) = \frac{9n}{10}$  by (KT, 1986) and  $ex(n; P_6) = 2n$  by (EG, 1959).

Let  $\epsilon > 0$ , and let k and n be integers with  $k \ge k_0(\epsilon)$  and  $n \ge a_k$ , where  $a_k$  is defined previously. Then for any integer m such that  $sat(n; P_k) \le m \le ex(n; P_k) - (\sqrt{2} + \epsilon)k^{3/2}$  there exists a  $P_k$ -saturated graph on n vertices with m edges.

Let  $\epsilon > 0$ , and let k and n be integers with  $k \ge k_0(\epsilon)$  and  $n \ge a_k$ , where  $a_k$  is defined previously. Then for any integer m such that  $sat(n; P_k) \le m \le ex(n; P_k) - (\sqrt{2} + \epsilon)k^{3/2}$  there exists a  $P_k$ -saturated graph on n vertices with m edges.

We also show that  $ex(n; P_k) - (\sqrt{2} + o(1))k^{3/2}$  is the best possible upper bound, up to the constant  $\sqrt{2}$ . More precisely, we show that for each sufficiently large k there exists an infinite sequence of n and m with  $sat(n; P_k) \le m \le ex(n; P_k) - \epsilon k^{3/2}$ , and no  $P_k$ -saturated graph exists with n vertices and m edges.

Let n and k be two integers such that  $n \ge k \ge 1$ . Then for any integer m such that sat $(n; K_{1,k}) \le m \le ex(n; K_{1,k})$  there is a  $K_{1,k}$ -saturated graph on n vertices with m edges.

We use the following Lemma to get the top part of the edge spectrum for paths...

#### Lemma

Let f(n) be the largest integer such that every integer between 0 and f(n) can be represented as  $\sum_{i\geq 1} {r_i \choose 2}$  with  $\sum_{i\geq 1} r_i = n$  and integers  $r_i \geq 0$ . Then  $f(n) \geq \frac{1}{2}(n-2\sqrt{n})^2$  for  $n\geq 2$ .

## Sketch of the Proof

**Part 1**. Let n = l(k-1) + r,  $0 \le r < k-1$ . We will deal with the cases when r is large and r is small separately. **Case 1.1:**  $\binom{r}{2} \ge k-2$ . Let

$$G_0 = \left(\bigcup_{i=1}^{l-s} K_{k-1}\right) \cup \left(\bigcup_{i=1}^{s-1} K_{k-2}\right) \cup H \cup K_r,$$

where  $H = K_1 + (K_{k-3} \cup \overline{K}_s)$ .



Figure:  $G_0$ 

Then  $|E(G_0)| = e - s(k - 3)$ , where  $e = ex(n; P_k)$ .

**Case 1.2:**  $\binom{r}{2} < k - 2$ . In this case we let

$$G_1 = \left(\bigcup_{i=1}^{l-s} K_{k-1}\right) \cup \left(\bigcup_{i=1}^{s-1} K_{k-2}\right) \cup H_{r+s},$$

where  $H_{r+s} = K_1 + (K_{k-3} \cup \overline{K}_{s+r})$ . Note that this graph is saturated provided  $r + s \ge 2$ , and  $|E(G_1)| = e - s(k-3) - a$ , where  $e = ex(n; P_k)$  and  $a = \binom{r}{2} - r$ .

The following claim tells us that by moving vertices from some cliques to other cliques in  $G_0$  (or in  $G_1$ ) we gain some edges.

-∢∃>

The following claim tells us that by moving vertices from some cliques to other cliques in  $G_0$  (or in  $G_1$ ) we gain some edges. **Claim:** Replacing the cliques  $K_{k-2}$  by  $K_{k-1-r_i}$  in graph  $G_0$  so that their

total order remains constant always gains  $\sum_{i=1}^{r_i} \binom{r_i}{2}$  edges, where  $r_i \ge 0$  are such that  $\sum_{i \in I} r_i = |I|$  is the original number of  $K_{k-2}$  cliques.

The following claim tells us that by moving vertices from some cliques to other cliques in  $G_0$  (or in  $G_1$ ) we gain some edges. **Claim:** Replacing the cliques  $K_{k-2}$  by  $K_{k-1-r_i}$  in graph  $G_0$  so that their total order remains constant always gains  $\sum {r_i \choose 2}$  edges, where  $r_i \ge 0$  are such that  $\sum_{i \in I} r_i = |I|$  is the original number of  $K_{k-2}$  cliques. **Proof of Claim:** Replacing  $K_{k-2}$  by  $K_{k-1-r_i}$  changes the number of edges by

$$\binom{k-1-r_i}{2} - \binom{k-2}{2} = \frac{1}{2} ((k-1-r_i)(k-2-r_i) - (k-2)(k-3))$$
  
=  $\frac{1}{2} (r_i^2 - (2k-3)r_i + 2(k-2)) = (k-2)(1-r_i) + \binom{r_i}{2}.$ 

Summing over *i* and noting that  $\sum (1 - r_i) = 0$  gives the result.

イロト イ団ト イヨト イヨト 二耳

**Part2:** Define Forming a Pendant Triangle at a vertex x as follow: remove two vertices from the s pendant vertices and form a triangle whose vertices are the vertex x and two removed vertices. By Forming a Pendant Triangle at a vertex x we gain exactly 1 edge, and the resulting graph is still  $P_k$ -saturated



Figure: Forming a Pendant Triangle at x

# Sketch of the Proof

**Part 3**: We start with a smallest saturated graph *G*, which is a forest consisting of almost binary trees  $T_k$ , with  $|E(G)| = sat(n; P_k) = n - \lfloor \frac{n}{a_k} \rfloor$ . By forming pendant triangles in a tree component many times, we cover the bottom part of the spectrum.



Figure: Forming a Pendant Triangle on the bottom level

## Corollary

Let k be sufficiently large, and let n = (k - 1)I. Then there is an integer  $\beta_0 \sim k^{3/2}/\sqrt{24}$  such that there is no  $P_k$ -saturated graph of size  $ex(n; P_k) - \beta_0$ .

# The End Thank You!

Ali Dogan (UofM)

æ

A B A A B A

Image: Image: