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Professor W. T. Tutte

• English Mathematician
• Codebreaker during WWII
• Profound graph theorist
• Forefather of matroid theory

Tutte, 1961:
The only 3-connected graphs

in which every edge is essential
are the wheel graphs.

Tutte, 1966:
The only 3-connected matroids

in which every element is essential
are the whirl matroids and 

cycle matroids of wheel graphs.
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A matroid M is a set E together with a collection C 
of subsets of E which satisfies the following axioms:

1. ∅ ∉ C.
2. If C1 and C2 are in C and C1⊆C2, then C1=C2.

3. If C1 and C2 are in C and e ∈ C1∩C2,

then ∃ C3 ⊆ (C1∪C2) - {e}.

From graphs to matroids: 

edges ↔︎ elements

 cycles ↔︎ circuits
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More matroid stuff to know:
Duality:

Orthogonality:

Connectivity:

Every matroid has a unique dual. Structures in the dual are referred 
to by appending the prefix “co-”. For example: cocircuit.

A circuit and a cocircuit cannot intersect in exactly one element.

If a matroid is n-connected, 
then its smallest (co)circuits have size n.
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We can show that M can be partitioned into 4-cocircuits.

Suppose M≅ M(K4,i) when 4 ≤ i ≤ n-1.
Consider when | M | = 4n.

For cocircuits Dj, we know |Z∩Dj| ≥ 2.
For every j,  we know Z∩Dj≠∅, so |Z| ≥ 2n.
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Q.E.D.
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There is a minimal set, Z, that is a circuit in one but not the other.
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