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every pair of elements is in a 4-element circuit
and every element is in a 3-element cocircuit
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Let M be a matroid as with | M |= 6.

Step |:Show that M has four pairwise-disjoint 4-cocircuits.

Assume M has two pairwise-disjoint 4-cocircuits.

Lemma: If D) and D; are pairwise-disjoint 4-cocircuits,

then M|(DiuDy) = M(Ka4p).
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Case 2: D) and | > are NOT the only two disjoint 4-cocircuits.



Let M be a matroid as above with | M |=16.

Step |: Show that M has four pairwise-disjoint 4-cocircuits.

Assume M has two pairwise-disjoint 4-cocircuits.

Lemma: If Dy and D3 are pairwise-disjoint 4-cocircuits,

then M|(DiuD,) = M (K4p2).
Step 2: Show that when | M | =16, we get M= M(K44).
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Step 3:Induction on | M |.

We can show that M can be partitioned into 4-cocircuits.
Suppose M= M(K4;) when 4 < i < n-I.
Consider when | M | = 4n.
There is a minimal set, Z, that is a circuit in one but not the other.
For cocircuits D;, we know |ZnD;| = 2.
For every j, we know ZnDj# 3, so [Z| = 2n.

Thus 2n < |Z| < r(M)+| = (n+3)+1,and n < 4.

£ ANy ; "o b A € d Iy . WAL ris ) by B 5 . . .87 i S RY. Lo , A e : Yele T A N ¢ 5 By :
M e L SN R PR TR e SERRE N TET LRt ot L P et R L, S e T D S e T8 1y £ P RN I DS L] vyt o R I I W d Y it U P oty St g Nl Wt B G PR Sl W L RL S o WP
PP %z ,1-.,-, R b s aNE 4 T 0 = R SR S 2k '\".. s e -‘! OB el B S b S e NS /N QSR GE Ve @ N@E . | O R0 D
! 13 A [t 2L > g 3 T/ - PN\ & HRCRON * WAl 4s 4 1. ) . Joag e vy el Sl Te CrRa 2 T8, P, sy B b . W I M PTG S v o\ £ R D VTN K S | K e oo s - D .
o peth i SRR Lt ‘\,_.J e :c'x: AN A PN p .';-? . N S .:‘..i‘ " -‘.'f LAy Loy A .l‘-.“:.f',‘r Rl g ,-_\‘> % o NSNS 4"_"‘.’?’ X fu_{'!_ ) Q; KR ¥,y AP . ‘.,"..'.,‘ ’ l b g A oy __,'.."_k.?"}"‘.'. »

& l'.:"l"" » ,—." -




Step 3: Induction on | M |.

We can show that M can be partitioned into 4-cocircuits.
Suppose M= M(K4;) when 4 < i < n-I.
Consider when | M | = 4n.
There is a minimal set, Z, that is a circuit in one but not the other.

For cocircuits Dj, we know |ZnD;| = 2.
For every j, we know ZnD;#¥ 3, so |Z| = 2n.

Thus 2n < |Z| < r(M)+| = (n+3)+l,and n < 4.




The only 4-connected matroids in which every element is
‘in both a 4-element circuit and a 4-element cocircuit
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