

A polynomial algorithm to check the fixed point property for ordered sets of dimension 2

Bernd Schröder

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

bility The Algorithm

n Open Questions

Definition. An **ordered set** is a pair (P, \leq) of a set P and a reflexive, antisymmetric and transitive relation \leq , the order relation.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Fixed Point Property

d2-collapsibility

osibility 1

The Algorithm

Open Questions

Definition. An **ordered set** is a pair (P, \leq) of a set *P* and a reflexive, antisymmetric and transitive relation \leq , the order relation.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

The Algorithm

Open Questions

Definition. A finite ordered set P is **two-dimensional** iff its order is the intersection of two linear orders.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

The Algorithm

Open Questions

Definition. A finite ordered set P is **two-dimensional** iff its order is the intersection of two linear orders.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

sibility T

Definition. A function from a finite ordered set (P, \leq) to another ordered set (Q, \leq) is called **order-preserving** *iff*, for all $x, y \in P$ we have that $x \leq y$ implies $f(x) \leq f(y)$.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

osibility [

The Algorithm O

Open Questions

Definition. A function from a finite ordered set (P, \leq) to another ordered set (Q, \leq) is called **order-preserving** *iff*, for all $x, y \in P$ we have that $x \leq y$ implies $f(x) \leq f(y)$.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

psibility

Definition. A function from a finite ordered set (P, \leq) to another ordered set (Q, \leq) is called **order-preserving** *iff*, for all $x, y \in P$ we have that $x \leq y$ implies $f(x) \leq f(y)$.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Open Questions

Definition. A function from a finite ordered set (P, <) to another ordered set (Q, \leq) is called **order-preserving** *iff*, for all $x, y \in P$ we have that $x \leq y$ implies $f(x) \leq f(y)$.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Open Questions

Definition. A function from a finite ordered set (P, \leq) to another ordered set (Q, \leq) is called **order-preserving** iff, for all $x, y \in P$ we have that $x \leq y$ implies $f(x) \leq f(y)$.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

psibility 1

Definition. A function from a finite ordered set (P, \leq) to another ordered set (Q, \leq) is called **order-preserving** *iff*, for all $x, y \in P$ we have that $x \leq y$ implies $f(x) \leq f(y)$.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

osibility 1

Definition. A function from a finite ordered set (P, \leq) to another ordered set (Q, \leq) is called **order-preserving** *iff*, for all $x, y \in P$ we have that $x \leq y$ implies $f(x) \leq f(y)$.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. A function from a finite ordered set (P, \leq) to another ordered set (Q, \leq) is called **order-preserving** *iff*, for all $x, y \in P$ we have that $x \leq y$ implies $f(x) \leq f(y)$.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

psibility

Definition. A function from a finite ordered set (P, \leq) to another ordered set (Q, \leq) is called **order-preserving** *iff*, for all $x, y \in P$ we have that $x \leq y$ implies $f(x) \leq f(y)$.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. A function from a finite ordered set (P, \leq) to another ordered set (Q, \leq) is called **order-preserving** *iff*, for all $x, y \in P$ we have that $x \leq y$ implies $f(x) \leq f(y)$.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. A function from a finite ordered set (P, \leq) to another ordered set (Q, \leq) is called **order-preserving** *iff*, for all $x, y \in P$ we have that $x \leq y$ implies $f(x) \leq f(y)$.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. A finite ordered set is said to have the **fixed point property** iff every order-preserving self-map has a fixed point.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

ibility 1

The Algorithm

Open Questions

Definition. A finite ordered set is said to have the **fixed point property** iff every order-preserving self-map has a fixed point.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

The Algorithm

Open Questions

Definition. *Let P be an ordered set.*

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

oility The Algorithm

Open Questions

Definition. Let P be an ordered set. Then an order-preserving map $r : P \rightarrow P$ is called a **retraction** iff $r^2 = r$

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi
Definition. Let P be an ordered set. Then an order-preserving map $r : P \rightarrow P$ is called a **retraction** iff $r^2 = r$ (that is, iff r is **idempotent**).

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. Let P be an ordered set. Then an order-preserving map $r : P \to P$ is called a **retraction** iff $r^2 = r$ (that is, iff r is **idempotent**). We will say that $R \subseteq P$ is a **retract** of P

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. Let *P* be an ordered set. Then an order-preserving map $r : P \to P$ is called a **retraction** iff $r^2 = r$ (that is, iff *r* is **idempotent**). We will say that $R \subseteq P$ is a **retract** of *P* iff there is a retraction $r : P \to P$ with r[P] = R.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. Let *P* be an ordered set. Then an order-preserving map $r : P \to P$ is called a **retraction** iff $r^2 = r$ (that is, iff *r* is **idempotent**). We will say that $R \subseteq P$ is a **retract** of *P* iff there is a retraction $r : P \to P$ with r[P] = R.

Theorem.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. Let *P* be an ordered set. Then an order-preserving map $r : P \to P$ is called a **retraction** iff $r^2 = r$ (that is, iff *r* is **idempotent**). We will say that $R \subseteq P$ is a **retract** of *P* iff there is a retraction $r : P \to P$ with r[P] = R.

Theorem. *Let P be an ordered set with the fixed point property and let* $r : P \rightarrow P$ *be a retraction.*

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. Let *P* be an ordered set. Then an order-preserving map $r : P \to P$ is called a **retraction** iff $r^2 = r$ (that is, iff *r* is **idempotent**). We will say that $R \subseteq P$ is a **retract** of *P* iff there is a retraction $r : P \to P$ with r[P] = R.

Theorem. Let *P* be an ordered set with the fixed point property and let $r : P \to P$ be a retraction. Then r[P] has the fixed point property.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. Let *P* be an ordered set. Then an order-preserving map $r : P \to P$ is called a **retraction** iff $r^2 = r$ (that is, iff *r* is **idempotent**). We will say that $R \subseteq P$ is a **retract** of *P* iff there is a retraction $r : P \to P$ with r[P] = R.

Theorem. Let *P* be an ordered set with the fixed point property and let $r : P \to P$ be a retraction. Then r[P] has the fixed point property.

What about possible converses?

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. Let *P* be a finite ordered set and let $x, y \in P$.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. Let *P* be a finite ordered set and let $x, y \in P$. If x < y and there is no $z \in P$ so that x < z < y, then y is called an **upper cover** of x

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. Let *P* be a finite ordered set and let $x, y \in P$. If x < y and there is no $z \in P$ so that x < z < y, then *y* is called an **upper cover** of *x* and *x* is called a **lower cover** of *y*.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Open Questions

Definition. Let P be a finite ordered set and let $x, y \in P$. If x < y and there is no $z \in P$ so that x < z < y, then y is called an **upper cover** of x and x is called a lower cover of y. In a finite ordered set, a point is called irreducible iff it has exactly one upper cover or exactly one lower cover.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

sibility 1

Definition. Let P be a finite ordered set and let $x, y \in P$. If x < y and there is no $z \in P$ so that x < z < y, then y is called an **upper cover** of x and x is called a lower cover of y. In a finite ordered set, a point is called irreducible iff it has exactly one upper cover or exactly one lower cover.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

The Algorithm

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

The Algorithm

Open Questions

Theorem (Rival, 1976).

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

sibility T

Theorem (Rival, 1976). *Let* P *be a finite ordered set and let* $a \in P$ *be irreducible.*

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

sibility 1

Theorem (Rival, 1976). *Let* P *be a finite ordered set and let* $a \in P$ *be irreducible. Then* P *has the fixed point property iff*

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Theorem (Rival, 1976). Let P be a finite ordered set and let $a \in P$ be irreducible. Then P has the fixed point property iff $P \setminus \{a\}$ has the fixed point property.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

ibility Tł

Open Questions

Theorem (Rival, 1976). Let P be a finite ordered set and let $a \in P$ be irreducible. Then P has the fixed point property iff $P \setminus \{a\}$ has the fixed point property.

Definition.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. A finite ordered set P is called dismantlable iff

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. A finite ordered set P is called **dismantlable** iff |P| = 1

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. A finite ordered set P is called **dismantlable** iff |P| = 1 or there is a point $x \in P$ such that

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. A finite ordered set P is called **dismantlable** iff |P| = 1 or there is a point $x \in P$ such that 1. x is irreducible in P,

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. A finite ordered set P is called **dismantlable** iff |P| = 1 or there is a point $x \in P$ such that 1. x is irreducible in P, 2. $P \setminus \{x\}$ is dismantlable.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. Let *P* be a finite ordered set.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. Let P be a finite ordered set. A point $a \in P$ is called **retractable** (to the **point** $b \in P \setminus \{a\}$)

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. Let *P* be a finite ordered set. A point $a \in P$ is called **retractable (to the point** $b \in P \setminus \{a\}$) iff for all $x \in P, x > a$ implies $x \ge b$

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. Let *P* be a finite ordered set. A point $a \in P$ is called **retractable (to the point** $b \in P \setminus \{a\}$) iff for all $x \in P, x > a$ implies $x \ge b$ and x < a implies $x \le b$.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi
d2-collapsibility

Definition. Let *P* be a finite ordered set. A point $a \in P$ is called **retractable** (to the **point** $b \in P \setminus \{a\}$) iff for all $x \in P, x > a$ implies $x \ge b$ and x < a implies $x \le b$.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

d2-collapsibility

n Open Questions

Definition. Let *P* be a finite ordered set. A point $a \in P$ is called **retractable (to the point** $b \in P \setminus \{a\}$) iff for all $x \in P$, x > a implies $x \ge b$ and x < a implies $x \le b$.

• b

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Fixed Point Property Retractable Points Dimension 2 d2-collapsibility The Algorithm Open Questions

Theorem (BS, 1993).

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Fixed Point Property

d2-collapsibility

Theorem (BS, 1993). *Let* P *be a finite ordered set and let* $a \in P$ *be retractable.*

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

d2-collapsibility

sibility Th

Theorem (BS, 1993). *Let* P *be a finite ordered set and let* $a \in P$ *be retractable. Then* P *has the fixed point property iff*

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

d2-collapsibility

bility The

The Algorithm

Theorem (BS, 1993). Let P be a finite ordered set and let $a \in P$ be retractable. Then P has the fixed point property iff 1. $P \setminus \{a\}$ has the fixed point property.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Theorem (BS, 1993). Let P be a finite ordered set and let $a \in P$ be retractable. Then P has the fixed point property iff

- 1. $P \setminus \{a\}$ has the fixed point property.
- 2. $a \setminus \{a\}$ has the fixed point property.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

2. $a \setminus \{a\}$ has the fixed point property.

Definition.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Theorem (BS, 1993). Let P be a finite ordered set and let $a \in P$ be retractable. Then P has the fixed point property iff 1. $P \setminus \{a\}$ has the fixed point property. 2. $\uparrow a \setminus \{a\}$ has the fixed point property.

Definition. A finite ordered set P is called **connectedly collapsible** *iff*

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Theorem (BS, 1993). Let P be a finite ordered set and let $a \in P$ be retractable. Then P has the fixed point property iff 1. $P \setminus \{a\}$ has the fixed point property. 2. $\uparrow a \setminus \{a\}$ has the fixed point property.

Definition. A finite ordered set P is called **connectedly** collapsible iff |P| = 1

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Theorem (BS, 1993). Let P be a finite ordered set and let $a \in P$ be retractable. Then P has the fixed point property iff 1. $P \setminus \{a\}$ has the fixed point property. 2. $\downarrow a \setminus \{a\}$ has the fixed point property.

Definition. A finite ordered set P is called **connectedly** collapsible iff |P| = 1 or there is a point $x \in P$ such that

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Theorem (BS, 1993). Let P be a finite ordered set and let $a \in P$ be retractable. Then P has the fixed point property iff 1. $P \setminus \{a\}$ has the fixed point property. 2. $\uparrow a \setminus \{a\}$ has the fixed point property.

Definition. A finite ordered set P is called **connectedly collapsible** iff |P| = 1 or there is a point $x \in P$ such that 1. x is retractable in P,

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Theorem (BS, 1993). Let P be a finite ordered set and let $a \in P$ be retractable. Then P has the fixed point property iff 1. $P \setminus \{a\}$ has the fixed point property. 2. $\uparrow a \setminus \{a\}$ has the fixed point property.

Definition. A finite ordered set P is called **connectedly** collapsible iff |P| = 1 or there is a point $x \in P$ such that

- 1. x is retractable in P,
- 2. $P \setminus \{x\}$ is connectedly collapsible,

Bernd Schröder

2. $a \setminus \{a\}$ has the fixed point property.

Definition. A finite ordered set P is called **connectedly** collapsible iff |P| = 1 or there is a point $x \in P$ such that

- 1. x is retractable in P,
- 2. $P \setminus \{x\}$ is connectedly collapsible,
- 3. $(\ddagger x) \setminus \{x\}$ is connectedly collapsible.

2. $a \setminus \{a\}$ has the fixed point property.

Definition. A finite ordered set P is called **connectedly** collapsible iff |P| = 1 or there is a point $x \in P$ such that

- 1. x is retractable in P,
- 2. $P \setminus \{x\}$ is connectedly collapsible,
- 3. $(\ddagger x) \setminus \{x\}$ is connectedly collapsible.

Definition.

2. $a \setminus \{a\}$ has the fixed point property.

Definition. A finite ordered set P is called **connectedly** collapsible iff |P| = 1 or there is a point $x \in P$ such that

- 1. x is retractable in P,
- 2. $P \setminus \{x\}$ is connectedly collapsible,
- 3. $(\ddagger x) \setminus \{x\}$ is connectedly collapsible.

Definition. A finite ordered set P is called collapsible iff

2. $\uparrow a \setminus \{a\}$ has the fixed point property.

Definition. A finite ordered set P is called **connectedly** collapsible iff |P| = 1 or there is a point $x \in P$ such that

- 1. x is retractable in P,
- 2. $P \setminus \{x\}$ is connectedly collapsible,
- 3. $(\ddagger x) \setminus \{x\}$ is connectedly collapsible.

Definition. A finite ordered set P is called **collapsible** iff $|P| \in \{0, 1\}$

2. $\uparrow a \setminus \{a\}$ has the fixed point property.

Definition. A finite ordered set P is called **connectedly** collapsible iff |P| = 1 or there is a point $x \in P$ such that

- 1. x is retractable in P,
- 2. $P \setminus \{x\}$ is connectedly collapsible,
- 3. $(\ddagger x) \setminus \{x\}$ is connectedly collapsible.

Definition. A finite ordered set P is called **collapsible** iff $|P| \in \{0,1\}$ or there is a point $x \in P$ such that

1. $P \setminus \{a\}$ has the fixed point property. 2. $\uparrow a \setminus \{a\}$ has the fixed point property.

2. $a \setminus \{a\}$ has the fixed point property.

Definition. A finite ordered set P is called **connectedly** collapsible iff |P| = 1 or there is a point $x \in P$ such that

- 1. *x* is retractable in *P*,
- 2. $P \setminus \{x\}$ is connectedly collapsible,
- 3. $(\ddagger x) \setminus \{x\}$ is connectedly collapsible.

Definition. A finite ordered set P is called **collapsible** iff $|P| \in \{0, 1\}$ or there is a point $x \in P$ such that

1. x is retractable in P.

2. $\uparrow a \setminus \{a\}$ has the fixed point property.

Definition. A finite ordered set P is called **connectedly** collapsible iff |P| = 1 or there is a point $x \in P$ such that

- 1. x is retractable in P,
- 2. $P \setminus \{x\}$ is connectedly collapsible,
- 3. $(\ddagger x) \setminus \{x\}$ is connectedly collapsible.

Definition. A finite ordered set P is called collapsible iff

- $|P| \in \{0,1\}$ or there is a point $x \in P$ such that
 - 1. x is retractable in P,
 - 2. $P \setminus \{x\}$ is collapsible,

- 1. $P \setminus \{a\}$ has the fixed point property.
- 2. $\uparrow a \setminus \{a\}$ has the fixed point property.

Definition. A finite ordered set P is called **connectedly** collapsible iff |P| = 1 or there is a point $x \in P$ such that

- 1. *x* is retractable in *P*,
- 2. $P \setminus \{x\}$ is connectedly collapsible,
- 3. $(\ddagger x) \setminus \{x\}$ is connectedly collapsible.

Definition. A finite ordered set P is called collapsible iff

- $|P| \in \{0,1\}$ or there is a point $x \in P$ such that
 - 1. x is retractable in P,
 - 2. $P \setminus \{x\}$ is collapsible,
 - 3. $(\ddagger x) \setminus \{x\}$ is collapsible.

Bernd Schröder

d2-collapsibility

An Example (Rutkowski)

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi
An Example (Rutkowski)

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

An Example (Rutkowski)

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

An Example (Rutkowski)

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

An Example (Rutkowski)

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

An Example (Rutkowski)

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

An Example (Rutkowski)

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

An Example (Rutkowski)

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Open Questions

An Example (Rutkowski)

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

An Example (Rutkowski)

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Dimension 2

d2-collapsibility

The Algorithm

Open Questions

Theorem (Fofanova, Rutkowski, Rival, 1994).

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

The Algorithm

Open Questions

Theorem (Fofanova, Rutkowski, Rival, 1994). Let P be a finite ordered set of interval dimension 2.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

The Algorithm

Open Questions

Theorem (Fofanova, Rutkowski, Rival, 1994). Let P be a

finite ordered set of interval dimension 2. Then P contains a point with a unique lower cover that is minimal in P, or

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

sibility Th

The Algorithm C

Open Questions

Theorem (Fofanova, Rutkowski, Rival, 1994). Let P be a finite ordered set of interval dimension 2. Then P contains a point with a unique lower cover that is minimal in P, or, P contains a minimal element a that is retractable to another minimal element b.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

ity The Algorithm

m Open Questions

Theorem (Fofanova, Rutkowski, Rival, 1994). Let P be a finite ordered set of interval dimension 2. Then P contains a point with a unique lower cover that is minimal in P, or, P contains a minimal element a that is retractable to another minimal element b.

Definition.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. *Let P be a finite ordered set and let* $a \in P$ *. Then a is called* **d2-retractable** (*in P*) *iff one of the following holds.*

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. *Let* P *be a finite ordered set and let* $a \in P$ *. Then a is called* **d2-retractable** (*in* P) *iff one of the following holds.*

1. The point a is irreducible, or,

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Open Questions

Theorem (Fofanova, Rutkowski, Rival, 1994). Let P be a finite ordered set of interval dimension 2. Then P contains a point with a unique lower cover that is minimal in P, or, P contains a minimal element a that is retractable to another minimal element b.

Definition. Let P be a finite ordered set and let $a \in P$. Then a is called **d2-retractable** (in P) iff one of the following holds.

- 1. The point a is irreducible, or,
- 2. The point a is not irreducible, but minimal in P and retractable to another minimal element b of P.

Bernd Schröder

Definition. *Let* P *be a finite ordered set and let* $a \in P$ *. Then a is called* **d2-retractable** (*in* P) *iff one of the following holds.*

- 1. The point a is irreducible, or,
- 2. The point a is not irreducible, but minimal in P and retractable to another minimal element b of P.

Definition.

Definition. *Let* P *be a finite ordered set and let* $a \in P$ *. Then a is called* **d2-retractable** (*in* P) *iff one of the following holds.*

- 1. The point a is irreducible, or,
- 2. The point a is not irreducible, but minimal in P and retractable to another minimal element b of P.

Definition. *Let P be a finite ordered set.*

Bernd Schröder

Definition. *Let* P *be a finite ordered set and let* $a \in P$ *. Then a is called* **d2-retractable** (*in* P) *iff one of the following holds.*

- 1. The point a is irreducible, or,
- 2. The point a is not irreducible, but minimal in P and retractable to another minimal element b of P.

Definition. *Let P be a finite ordered set. Then P is said to have a* **d2-retraction sequence**

Definition. Let P be a finite ordered set and let $a \in P$. Then a is called **d2-retractable** (in P) iff one of the following holds.

- 1. The point a is irreducible, or,
- 2. The point a is not irreducible, but minimal in P and retractable to another minimal element b of P.

Definition. Let P be a finite ordered set. Then P is said to have a **d2-retraction sequence** iff there is a retraction sequence $a_1, \ldots, a_{|P|}$ so that, for all $i \in \{1, \ldots, |P| - 1\}$, the point a_i is d2-retractable in $P \setminus \{a_1, \ldots, a_{i-1}\}$.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

The Algorithm

Open Questions

Lemma (BS, henceforth omitted, joke gets old).

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Fixed Point Property

d2-collapsibility

y The Algorithm

Open Questions

Lemma (BS, henceforth omitted, joke gets old). *Let P be a finite ordered set that has a d2-retraction sequence and let* $r : P \rightarrow P$ *be a retraction.*

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

sibility Tł

The Algorithm

Open Questions

Lemma (BS, henceforth omitted, joke gets old). *Let P be a finite ordered set that has a d2-retraction sequence and let* $r : P \rightarrow P$ *be a retraction. Then* r[P] *has a d2-retraction sequence.*

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

lity The A

The Algorithm O

Open Questions

Lemma (BS, henceforth omitted, joke gets old). *Let* P *be a finite ordered set that has a d2-retraction sequence and let* $r : P \rightarrow P$ *be a retraction. Then* r[P] *has a d2-retraction sequence.*

Lemma.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

The Algorithm

Open Questions

Lemma (BS, henceforth omitted, joke gets old). *Let P be a finite ordered set that has a d2-retraction sequence and let* $r : P \rightarrow P$ *be a retraction. Then* r[P] *has a d2-retraction sequence.*

Lemma. *Let P be a finite ordered set and let* $x \in P$ *be d2-retractable.*

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

y The Algorithm

Open Questions

Lemma (BS, henceforth omitted, joke gets old). *Let P be a finite ordered set that has a d2-retraction sequence and let* $r : P \rightarrow P$ *be a retraction. Then* r[P] *has a d2-retraction sequence.*

Lemma. Let P be a finite ordered set and let $x \in P$ be d2-retractable. Then P has a d2-retraction sequence iff $P \setminus \{x\}$ does.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

lity The Algorithm

ithm Ope

Open Questions

Lemma (BS, henceforth omitted, joke gets old). *Let P be a finite ordered set that has a d2-retraction sequence and let* $r : P \rightarrow P$ *be a retraction. Then* r[P] *has a d2-retraction sequence.*

Lemma. Let P be a finite ordered set and let $x \in P$ be d2-retractable. Then P has a d2-retraction sequence iff $P \setminus \{x\}$ does.

Lemma.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

The Algorithm

Open Questions

Lemma (BS, henceforth omitted, joke gets old). *Let* P *be a finite ordered set that has a d2-retraction sequence and let* $r : P \rightarrow P$ *be a retraction. Then* r[P] *has a d2-retraction sequence.*

Lemma. Let P be a finite ordered set and let $x \in P$ be d2-retractable. Then P has a d2-retraction sequence iff $P \setminus \{x\}$ does.

Lemma. For any ordered set P, it takes at most $3|P|^3$ steps to decide if there is a d2-retraction sequence for P

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Lemma (BS, henceforth omitted, joke gets old). *Let P be a finite ordered set that has a d2-retraction sequence and let* $r : P \rightarrow P$ *be a retraction. Then* r[P] *has a d2-retraction sequence.*

Lemma. Let P be a finite ordered set and let $x \in P$ be d2-retractable. Then P has a d2-retraction sequence iff $P \setminus \{x\}$ does.

Lemma. For any ordered set P, it takes at most $3|P|^3$ steps to decide if there is a d2-retraction sequence for P and, if so, to compute a d2-retraction sequence for P.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Fixed Point Property	Retractable Points	Dimension 2	The Algorithm	Open Questions

Lemma.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

The Algorithm

Open Questions

Lemma. Let P be a finite ordered set that has a d2-retraction sequence $a_1, \ldots, a_{|P|}$.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Lemma. Let P be a finite ordered set that has a d2-retraction sequence $a_1, \ldots, a_{|P|}$. Then P has the fixed point property iff

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Lemma. Let P be a finite ordered set that has a d2-retraction sequence $a_1, \ldots, a_{|P|}$. Then P has the fixed point property iff, for all $i \in \{1, \ldots, |P| - 1\}$ so that, in $P \setminus \{a_1, \ldots, a_{i-1}\}$, a_i is minimal, not irreducible, but retractable to minimal element of $P \setminus \{a_1, \ldots, a_{i-1}\}$, we have that $\uparrow_{P \setminus \{a_1, \ldots, a_{i-1}\}} a_i$ has the fixed point property.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Fixed Point Property	Retractable Points	Dimension 2	The Algorithm	Open Questions

Lemma.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

bility Th

The Algorithm

Open Questions

Lemma. *Let P be a finite ordered set.*

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi
d2-collapsibil

y The Algorithm

Open Questions

Lemma. Let P be a finite ordered set. Then P is called **d2-collapsible** iff P is empty, a singleton

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

d2-collapsibil

Lemma. Let P be a finite ordered set. Then P is called **d2-collapsible** iff P is empty, a singleton, or, |P| > 1 and P has a d2-retraction sequence $a_1, \ldots, a_{|P|}$ so that

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Lemma. Let P be a finite ordered set. Then P is called **d2-collapsible** iff P is empty, a singleton, or, |P| > 1 and P has a d2-retraction sequence $a_1, \ldots, a_{|P|}$ so that, for each $i \in \{1, \ldots, |P| - 1\}$, if, in $P \setminus \{a_1, \ldots, a_{i-1}\}$, the point a_i is minimal, not irreducible, but retractable to another minimal element of $P \setminus \{a_1, \ldots, a_{i-1}\}$

d2-collapsible: *Don't allow the empty set.*

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Proposition.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Proposition. *Let P be a finite ordered set.*

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Proposition. *Let P be a finite ordered set.*

1. If P is d2-connectedly collapsible, then P is d2-collapsible.

Proposition. *Let P be a finite ordered set.*

- 1. If P is d2-connectedly collapsible, then P is d2-collapsible.
- 2. *If P is d2-connectedly collapsible, then P has the fixed point property.*

Bernd Schröder

Proposition. Let P be a finite ordered set.

- 1. If P is d2-connectedly collapsible, then P is d2-collapsible.
- 2. *If P is d2-connectedly collapsible, then P has the fixed point property.*
- 3. *If P is d2-collapsible, then P has the fixed point property iff P is d2-connectedly collapsible.*

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Fixed Point Property	Retractable Points	Dimension 2	The Algorithm	Open Questions

Lemma.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Lemma. Let *P* be a d2-collapsible ordered set and let $r : P \rightarrow P$ be a retraction.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Lemma. Let *P* be a d2-collapsible ordered set and let $r : P \to P$ be a retraction. Then r[P] is d2-collapsible.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Fixed Point Property

d2-collapsibil

y The Algorithm

Lemma. Let P be a d2-collapsible ordered set and let $r : P \rightarrow P$ be a retraction. Then r[P] is d2-collapsible. Moreover, if P is d2-connectedly collapsible, then r[P] is d2-connectedly collapsible.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

d2-collapsibil

Lemma. Let P be a d2-collapsible ordered set and let $r : P \to P$ be a retraction. Then r[P] is d2-collapsible. Moreover, if P is d2-connectedly collapsible, then r[P] is d2-connectedly collapsible.

Lemma.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Lemma. Let P be a finite ordered set with a d2-retraction sequence and let $a_1, \ldots, a_{|P|}$ be any d2-retraction sequence for P.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Lemma. Let P be a finite ordered set with a d2-retraction sequence and let $a_1, \ldots, a_{|P|}$ be any d2-retraction sequence for P. Then P is d2-collapsible iff

Lemma. Let P be a finite ordered set with a d2-retraction sequence and let $a_1, \ldots, a_{|P|}$ be any d2-retraction sequence for P. Then P is d2-collapsible iff, for any $i \in \{1, \ldots, |P| - 1\}$, we have that

Lemma. Let P be a finite ordered set with a d2-retraction sequence and let $a_1, \ldots, a_{|P|}$ be any d2-retraction sequence for P. Then P is d2-collapsible iff, for any $i \in \{1, \ldots, |P| - 1\}$, we have that if, in $P \setminus \{a_1, \ldots, a_{i-1}\}$, the point a_i is minimal, not irreducible, but retractable to another minimal element of $P \setminus \{a_1, \ldots, a_{i-1}\}$

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Lemma. Let P be a finite ordered set with a d2-retraction sequence and let $a_1, \ldots, a_{|P|}$ be any d2-retraction sequence for P. Then P is d2-collapsible iff, for any $i \in \{1, \ldots, |P| - 1\}$, we have that if, in $P \setminus \{a_1, \ldots, a_{i-1}\}$, the point a_i is minimal, not irreducible, but retractable to another minimal element of $P \setminus \{a_1, \ldots, a_{i-1}\}$, then $\uparrow_{P \setminus \{a_1, \ldots, a_{i-1}\}} a_i \setminus \{a_i\}$ is d2-collapsible.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Lemma. Let P be a finite ordered set with a d2-retraction sequence and let $a_1, ..., a_{|P|}$ be any d2-retraction sequence for P. Then P is d2-collapsible iff, for any $i \in \{1, ..., |P| - 1\}$, we have that if, in $P \setminus \{a_1, ..., a_{i-1}\}$, the point a_i is minimal, not irreducible, but retractable to another minimal element of $P \setminus \{a_1, ..., a_{i-1}\}$, then $\uparrow_{P \setminus \{a_1, ..., a_{i-1}\}} a_i \setminus \{a_i\}$ is d2-collapsible. The same result holds when "d2-collapsible" is replaced with "d2-connectedly collapsible."

Bernd Schröder

Lemma. Let P be a finite ordered set with a d2-retraction sequence and let $a_1, ..., a_{|P|}$ be any d2-retraction sequence for P. Then P is d2-collapsible iff, for any $i \in \{1, ..., |P| - 1\}$, we have that if, in $P \setminus \{a_1, ..., a_{i-1}\}$, the point a_i is minimal, not irreducible, but retractable to another minimal element of $P \setminus \{a_1, ..., a_{i-1}\}$, then $\uparrow_{P \setminus \{a_1, ..., a_{i-1}\}} a_i \setminus \{a_i\}$ is d2-collapsible. The same result holds when "d2-collapsible" is replaced with "d2-connectedly collapsible."

Problem: Recursively, that's a lot of sets.

Bernd Schröder

Fixed Point Property	Retractable Points	Dimension 2	The Algorithm	Open Questions

Definition.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

d2-collapsibility

ibility Th

Definition. *Let C be a finite ordered set.*

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

d2-collapsibili

The Algorithm

Open Questions

Definition. Let C be a finite ordered set. Then C is called a **core** iff P contains no irreducible elements.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

d2-collapsibil

The Algorithm

Open Questions

Definition. Let C be a finite ordered set. Then C is called a **core** iff P contains no irreducible elements.

Theorem.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. Let C be a finite ordered set. Then C is called a **core** iff P contains no irreducible elements.

Theorem. (*Duffus-Poguntke-Rival 1980*, *Farley 1993*) Every finite ordered set has a unique core.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

d2-collapsibili

Definition. Let C be a finite ordered set. Then C is called a **core** iff P contains no irreducible elements.

Theorem. (*Duffus-Poguntke-Rival 1980, Farley 1993*) Every finite ordered set has a unique core.

Lemma.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. Let C be a finite ordered set. Then C is called a **core** iff P contains no irreducible elements.

Theorem. (*Duffus-Poguntke-Rival 1980, Farley 1993*) Every finite ordered set has a unique core.

Lemma. *Let P be a finite ordered set. Then P is d2-collapsible iff its core is d2-collapsible.*

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. Let C be a finite ordered set. Then C is called a **core** iff P contains no irreducible elements.

Theorem. (*Duffus-Poguntke-Rival 1980, Farley 1993*) Every finite ordered set has a unique core.

Lemma. Let P be a finite ordered set. Then P is d2-collapsible iff its core is d2-collapsible. The same result holds for d2-connectedly collapsible ordered sets.

Fixed Point Property	Retractable Points	Dimension 2	The Algorithm	Open Questions

Lemma.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

d2-collapsibili

Lemma. Let *H* be a finite ordered set, let $x, y \in P$ be two incomparable elements and let $a \in \uparrow x \cap \uparrow y$ be irreducible in *P*.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Fixed Point Property

d2-collapsibili

ility The Algorithm

Lemma. Let *H* be a finite ordered set, let $x, y \in P$ be two incomparable elements and let $a \in \uparrow x \cap \uparrow y$ be irreducible in *P*. Then *a* is irreducible in $\uparrow x \cap \uparrow y$.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

d2-collapsibili

Lemma. Let *H* be a finite ordered set, let $x, y \in P$ be two incomparable elements and let $a \in \uparrow x \cap \uparrow y$ be irreducible in *P*. Then *a* is irreducible in $\uparrow x \cap \uparrow y$.

Definition.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Lemma. Let *H* be a finite ordered set, let $x, y \in P$ be two incomparable elements and let $a \in \uparrow x \cap \uparrow y$ be irreducible in *P*. Then *a* is irreducible in $\uparrow x \cap \uparrow y$.

Definition. *Let P be a finite ordered and let* $Q \subseteq P$ *.*

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Lemma. Let *H* be a finite ordered set, let $x, y \in P$ be two incomparable elements and let $a \in \uparrow x \cap \uparrow y$ be irreducible in *P*. Then *a* is irreducible in $\uparrow x \cap \uparrow y$.

Definition. *Let P be a finite ordered and let* $Q \subseteq P$ *. Then P has a* **retraction sequence to** *Q iff*

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi
Definition. Let P be a finite ordered and let $Q \subseteq P$. Then P has a **retraction sequence to** Q iff the elements of $P \setminus Q$ can be arranged in a sequence $a_1, \ldots, a_{|P|-|Q|}$ so that, for all $i \in \{1, \ldots, |P|-1\}$, the point a_i is d2-retractable in $P \setminus \{a_1, \ldots, a_{i-1}\}$.

Bernd Schröder

Definition. Let *P* be a finite ordered and let $Q \subseteq P$. Then *P* has a **retraction sequence to** *Q* iff the elements of $P \setminus Q$ can be arranged in a sequence $a_1, \ldots, a_{|P|-|Q|}$ so that, for all $i \in \{1, \ldots, |P|-1\}$, the point a_i is d2-retractable in $P \setminus \{a_1, \ldots, a_{i-1}\}$.

Lemma.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. Let P be a finite ordered and let $Q \subseteq P$. Then P has a **retraction sequence to** Q iff the elements of $P \setminus Q$ can be arranged in a sequence $a_1, \ldots, a_{|P|-|Q|}$ so that, for all $i \in \{1, \ldots, |P|-1\}$, the point a_i is d2-retractable in $P \setminus \{a_1, \ldots, a_{i-1}\}$.

Lemma. Let P be a finite ordered set, let $x, y \in P$ be two incomparable elements

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. Let P be a finite ordered and let $Q \subseteq P$. Then P has a **retraction sequence to** Q iff the elements of $P \setminus Q$ can be arranged in a sequence $a_1, \ldots, a_{|P|-|Q|}$ so that, for all $i \in \{1, \ldots, |P|-1\}$, the point a_i is d2-retractable in $P \setminus \{a_1, \ldots, a_{i-1}\}$.

Lemma. Let *P* be a finite ordered set, let $x, y \in P$ be two incomparable elements and let $Q \subseteq P$ be a subset of *P* that contains *x* and *y*

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Definition. Let P be a finite ordered and let $Q \subseteq P$. Then P has a **retraction sequence to** Q iff the elements of $P \setminus Q$ can be arranged in a sequence $a_1, \ldots, a_{|P|-|Q|}$ so that, for all $i \in \{1, \ldots, |P|-1\}$, the point a_i is d2-retractable in $P \setminus \{a_1, \ldots, a_{i-1}\}$.

Lemma. Let P be a finite ordered set, let $x, y \in P$ be two incomparable elements and let $Q \subseteq P$ be a subset of P that contains x and y and for which P has a d2-retraction sequence to Q.

Bernd Schröder

Definition. Let P be a finite ordered and let $Q \subseteq P$. Then P has a **retraction sequence to** Q iff the elements of $P \setminus Q$ can be arranged in a sequence $a_1, \ldots, a_{|P|-|Q|}$ so that, for all $i \in \{1, \ldots, |P|-1\}$, the point a_i is d2-retractable in $P \setminus \{a_1, \ldots, a_{i-1}\}$.

Lemma. Let *P* be a finite ordered set, let $x, y \in P$ be two incomparable elements and let $Q \subseteq P$ be a subset of *P* that contains *x* and *y* and for which *P* has a d2-retraction sequence to *Q*. Then the core of $\uparrow_Q x \cap \uparrow_Q y$ is isomorphic to the core of $\uparrow x \cap \uparrow y$.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Fixed Point Property	Retractable Points	Dimension 2	The Algorithm	Open Questions

Lemma.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Lemma. Let P be a finite ordered set with a d2-retraction sequence and let $a_1, \ldots, a_{|P|}$ be any d2-retraction sequence for P.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

d2-collapsibil

bility The

Lemma. Let P be a finite ordered set with a d2-retraction sequence and let $a_1, \ldots, a_{|P|}$ be any d2-retraction sequence for P. Then P is d2-collapsible iff

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

d2-collapsibili

ity The Algorithm

Lemma. Let P be a finite ordered set with a d2-retraction sequence and let $a_1, \ldots, a_{|P|}$ be any d2-retraction sequence for P. Then P is d2-collapsible iff, for any $i \in \{1, \ldots, |P|-1\}$, we have that

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

d2-collapsibil

Open Questions

Lemma. Let P be a finite ordered set with a d2-retraction sequence and let $a_1, \ldots, a_{|P|}$ be any d2-retraction sequence for P. Then P is d2-collapsible iff, for any $i \in \{1, \ldots, |P| - 1\}$, we have that if, in $P \setminus \{a_1, \ldots, a_{i-1}\}$, the point a_i is minimal, not irreducible, but retractable to another minimal element a_{i+j} of $P \setminus \{a_1, \ldots, a_{i-1}\}$

Dimension 2

d2-collapsibili

oility The Algorithm

Open Questions

Lemma. Let P be a finite ordered set with a d2-retraction sequence and let $a_1, \ldots, a_{|P|}$ be any d2-retraction sequence for P. Then P is d2-collapsible iff, for any $i \in \{1, \ldots, |P| - 1\}$, we have that if, in $P \setminus \{a_1, \ldots, a_{i-1}\}$, the point a_i is minimal, not irreducible, but retractable to another minimal element a_{i+j} of $P \setminus \{a_1, \ldots, a_{i-1}\}$, then $\uparrow_{P \setminus \{a_1, \ldots, a_{i-1}\}} a_i \setminus \{a_i\}$ is d2-collapsible.

Dimension 2

d2-collapsibil

ty The Algorithm

Open Questions

Lemma. Let P be a finite ordered set with a d2-retraction sequence and let $a_1, \ldots, a_{|P|}$ be any d2-retraction sequence for P. Then P is d2-collapsible iff, for any $i \in \{1, \ldots, |P| - 1\}$, we have that if, in $P \setminus \{a_1, \ldots, a_{i-1}\}$, the point a_i is minimal, not irreducible, but retractable to another minimal element a_{i+j} of $P \setminus \{a_1, \ldots, a_{i-1}\}$, then $\uparrow_{P \setminus \{a_1, \ldots, a_{i-1}\}} a_i \setminus \{a_i\}$ is d2-collapsible. The same result holds when "d2-collapsible" is replaced with "d2-connectedly collapsible."

Dimension 2

d2-collapsibil

ity The Algorithm

Lemma. Let P be a finite ordered set with a d2-retraction sequence and let $a_1, \ldots, a_{|P|}$ be any d2-retraction sequence for P. Then P is d2-collapsible iff, for any $i \in \{1, \ldots, |P| - 1\}$, we have that if, in $P \setminus \{a_1, \ldots, a_{i-1}\}$, the point a_i is minimal, not irreducible, but retractable to another minimal element a_{i+j} of $P \setminus \{a_1, \ldots, a_{i-1}\}$, then $\uparrow_{P \setminus \{a_1, \ldots, a_{i-1}\}} a_i \setminus \{a_i\}$ is d2-collapsible. The same result holds when "d2-collapsible" is replaced with "d2-connectedly collapsible."

Lemma. Let P be a finite ordered set with a d2-retraction sequence and let $a_1, \ldots, a_{|P|}$ be any d2-retraction sequence for P. Then P is d2-collapsible iff, for any $i \in \{1, \ldots, |P| - 1\}$, we have that if, in $P \setminus \{a_1, \ldots, a_{i-1}\}$, the point a_i is minimal, not irreducible, but retractable to another minimal element a_{i+j} of $P \setminus \{a_1, \ldots, a_{i-1}\}$, then $\uparrow_{P \setminus \{a_1, \ldots, a_{i-1}\}} a_i \cap \uparrow_{P \setminus \{a_1, \ldots, a_{i-1}\}} a_{i+j}$ is d2-collapsible. The same result holds when "d2-collapsible" is replaced with "d2-connectedly collapsible."

Dimension 2

d2-collapsibili

ility The Algorithm

Lemma. Let P be a finite ordered set with a d2-retraction sequence and let $a_1, \ldots, a_{|P|}$ be any d2-retraction sequence for P. Then P is d2-collapsible iff, for any $i \in \{1, \ldots, |P| - 1\}$, we have that if, in $P \setminus \{a_1, \ldots, a_{i-1}\}$, the point a_i is minimal, not irreducible, but retractable to another minimal element a_{i+j} of $P \setminus \{a_1, \ldots, a_{i-1}\}$, then $\uparrow a_i \cap \uparrow a_{i+j}$ is d2-collapsible. The same result holds when "d2-collapsible" is replaced with "d2-connectedly collapsible."

Algorithm.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

d2-collapsibility

The Algori

Open Questions

Algorithm. The algorithm D2CCcheck.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

1. Input: The algorithm takes as input a nonempty list (P_1, \ldots, P_n) of ordered sets.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

 Input: The algorithm takes as input a nonempty list (P₁,...,P_n) of ordered sets.
Initialization.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

- 1. Input: The algorithm takes as input a nonempty list (P_1, \ldots, P_n) of ordered sets.
- 2. Initialization.
 - 2.1 Initialize the list \mathscr{S} to be the input, $\mathscr{S} := (P_1, \ldots, P_n)$.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

- 1. Input: The algorithm takes as input a nonempty list (P_1, \ldots, P_n) of ordered sets.
- 2. Initialization.
 - 2.1 Initialize the list \mathscr{S} to be the input, $\mathscr{S} := (P_1, \ldots, P_n)$.
 - 2.2 Initialize the list \mathcal{D} to be the empty list.

- 1. Input: The algorithm takes as input a nonempty list (P_1, \ldots, P_n) of ordered sets.
- 2. Initialization.
 - 2.1 Initialize the list \mathscr{S} to be the input, $\mathscr{S} := (P_1, \ldots, P_n)$.
 - 2.2 Initialize the list \mathcal{D} to be the empty list.
 - 2.3 Set the counter c := 1.

Bernd Schröder

3. If $\mathscr{S} = (Q_1, \ldots, Q_m)$ and c > m, return \mathscr{S} , \mathscr{D} , exit.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

If \$\mathcal{S}\$ = (Q₁,...,Q_m) and c > m, return \$\mathcal{S}\$, \$\varnothing\$, exit.
Given \$\mathcal{S}\$ = (Q₁,...,Q_m), consider the set Q_c.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

- 3. If $\mathscr{S} = (Q_1, \dots, Q_m)$ and c > m, return \mathscr{S} , \mathscr{D} , exit.
- 4. Given $\mathscr{S} = (Q_1, \dots, Q_m)$, consider the set Q_c . 4.1 If Q_c is a singleton, append $d_c := TRUE$ to \mathscr{D} .

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

3. If $\mathscr{S} = (Q_1, \ldots, Q_m)$ and c > m, return \mathscr{S} , \mathscr{D} , exit.

4. Given $\mathscr{S} = (Q_1, \dots, Q_m)$, consider the set Q_c . 4.1 If Q_c is a singleton, append $d_c := TRUE$ to \mathscr{D} .

4.2 If Q_c is an antichain and $|Q_c| > 1$, append $d_c := AC$ to \mathcal{D} .

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

- 3. If $\mathscr{S} = (Q_1, \ldots, Q_m)$ and c > m, return \mathscr{S} , \mathscr{D} , exit.
- 4. Given $\mathscr{S} = (Q_1, \ldots, Q_m)$, consider the set Q_c .
 - 4.1 If Q_c is a singleton, append $d_c := TRUE$ to \mathcal{D} .
 - 4.2 If Q_c is an antichain and $|Q_c| > 1$, append $d_c := AC$ to \mathcal{D} .
 - 4.3 If Q_c is not an antichain and $|Q_c| > 1$, execute an algorithm to find a d2-retraction sequence $a_1, \ldots, a_{|Q_c|}$ for Q_c .

- 3. If $\mathscr{S} = (Q_1, \ldots, Q_m)$ and c > m, return \mathscr{S} , \mathscr{D} , exit.
- 4. Given $\mathscr{S} = (Q_1, \ldots, Q_m)$, consider the set Q_c .
 - 4.1 If Q_c is a singleton, append $d_c := TRUE$ to \mathcal{D} .
 - 4.2 If Q_c is an antichain and $|Q_c| > 1$, append $d_c := AC$ to \mathcal{D} .
 - 4.3 If Q_c is not an antichain and $|Q_c| > 1$, execute an algorithm to find a d2-retraction sequence $a_1, \ldots, a_{|O_c|}$ for Q_c .
 - 4.3.1 If Q_c does not have a d2-retraction sequence, append $d_c := NO$ to \mathcal{D} .

- 3. If $\mathscr{S} = (Q_1, \ldots, Q_m)$ and c > m, return \mathscr{S} , \mathscr{D} , exit.
- 4. Given $\mathscr{S} = (Q_1, \ldots, Q_m)$, consider the set Q_c .
 - 4.1 If Q_c is a singleton, append $d_c := TRUE$ to \mathcal{D} .
 - 4.2 If Q_c is an antichain and $|Q_c| > 1$, append $d_c := AC$ to \mathcal{D} .
 - 4.3 If Q_c is not an antichain and $|Q_c| > 1$, execute an algorithm to find a d2-retraction sequence $a_1, \ldots, a_{|Q_c|}$ for Q_c .
 - 4.3.1 If Q_c does not have a d2-retraction sequence, append $d_c := NO$ to \mathcal{D} .
 - 4.3.2 If Q_c has a d2-retraction sequence $a_1, \ldots, a_{|Q_c|}$, append $d_c := TRUE$ to \mathcal{D} and proceed as follows.

- 3. If $\mathscr{S} = (Q_1, \ldots, Q_m)$ and c > m, return \mathscr{S} , \mathscr{D} , exit.
- 4. Given $\mathscr{S} = (Q_1, \ldots, Q_m)$, consider the set Q_c .
 - 4.1 If Q_c is a singleton, append $d_c := TRUE$ to \mathcal{D} .
 - 4.2 If Q_c is an antichain and $|Q_c| > 1$, append $d_c := AC$ to \mathcal{D} .
 - 4.3 If Q_c is not an antichain and $|Q_c| > 1$, execute an algorithm to find a d2-retraction sequence $a_1, \ldots, a_{|Q_c|}$ for Q_c .
 - 4.3.1 If Q_c does not have a d2-retraction sequence, append $d_c := NO$ to \mathcal{D} .
 - 4.3.2 If Q_c has a d2-retraction sequence $a_1, \ldots, a_{|Q_c|}$, append $d_c := TRUE$ to \mathscr{D} and proceed as follows. For every $i \in \{1, \ldots, |Q_c| - 1\}$ so that, in $Q_c \setminus \{a_1, \ldots, a_{i-1}\}$, a_i is a minimal element that is not irreducible, but retractable to the minimal element a_{i+j} of $Q_c \setminus \{a_1, \ldots, a_{i-1}\}$

- 3. If $\mathscr{S} = (Q_1, \ldots, Q_m)$ and c > m, return \mathscr{S} , \mathscr{D} , exit.
- 4. Given $\mathscr{S} = (Q_1, \ldots, Q_m)$, consider the set Q_c .
 - 4.1 If Q_c is a singleton, append $d_c := TRUE$ to \mathcal{D} .
 - 4.2 If Q_c is an antichain and $|Q_c| > 1$, append $d_c := AC$ to \mathcal{D} .
 - 4.3 If Q_c is not an antichain and $|Q_c| > 1$, execute an algorithm to find a d2-retraction sequence $a_1, \ldots, a_{|Q_c|}$ for Q_c .
 - 4.3.1 If Q_c does not have a d2-retraction sequence, append $d_c := NO$ to \mathcal{D} .
 - 4.3.2 If Q_c has a d2-retraction sequence $a_1, \ldots, a_{|Q_c|}$, append $d_c := TRUE$ to \mathscr{D} and proceed as follows. For every $i \in \{1, \ldots, |Q_c| - 1\}$ so that, in $Q_c \setminus \{a_1, \ldots, a_{i-1}\}$, a_i is a minimal element that is not irreducible, but retractable to the minimal element a_{i+j} of $Q_c \setminus \{a_1, \ldots, a_{i-1}\}$, check if $\uparrow a_i \cap \uparrow a_{i+j}$ is already listed in \mathscr{S} .

A polynomial algorithm to check the fixed point property for ordered sets of dimension 2

- 3. If $\mathscr{S} = (Q_1, \ldots, Q_m)$ and c > m, return \mathscr{S} , \mathscr{D} , exit.
- 4. Given $\mathscr{S} = (Q_1, \ldots, Q_m)$, consider the set Q_c .
 - 4.1 If Q_c is a singleton, append $d_c := TRUE$ to \mathcal{D} .
 - 4.2 If Q_c is an antichain and $|Q_c| > 1$, append $d_c := AC$ to \mathcal{D} .
 - 4.3 If Q_c is not an antichain and $|Q_c| > 1$, execute an algorithm to find a d2-retraction sequence $a_1, \ldots, a_{|Q_c|}$ for Q_c .
 - 4.3.1 If Q_c does not have a d2-retraction sequence, append $d_c := NO$ to \mathcal{D} .
 - 4.3.2 If Q_c has a d2-retraction sequence $a_1, \ldots, a_{|Q_c|}$, append $d_c := TRUE$ to \mathscr{D} and proceed as follows. For every $i \in \{1, \ldots, |Q_c| - 1\}$ so that, in $Q_c \setminus \{a_1, \ldots, a_{i-1}\}$, a_i is a minimal element that is not irreducible, but retractable to the minimal element a_{i+j} of $Q_c \setminus \{a_1, \ldots, a_{i-1}\}$, check if $\uparrow a_i \cap \uparrow a_{i+j}$ is already listed in \mathscr{S} . If not, append $\uparrow a_i \cap \uparrow a_{i+j}$ to \mathscr{S} .

A polynomial algorithm to check the fixed point property for ordered sets of dimension 2

- 3. If $\mathscr{S} = (Q_1, \ldots, Q_m)$ and c > m, return \mathscr{S} , \mathscr{D} , exit.
- 4. Given $\mathscr{S} = (Q_1, \ldots, Q_m)$, consider the set Q_c .
 - 4.1 If Q_c is a singleton, append $d_c := TRUE$ to \mathcal{D} .
 - 4.2 If Q_c is an antichain and $|Q_c| > 1$, append $d_c := AC$ to \mathcal{D} .
 - 4.3 If Q_c is not an antichain and $|Q_c| > 1$, execute an algorithm to find a d2-retraction sequence $a_1, \ldots, a_{|Q_c|}$ for Q_c .
 - 4.3.1 If Q_c does not have a d2-retraction sequence, append $d_c := NO$ to \mathcal{D} .
 - 4.3.2 If Q_c has a d2-retraction sequence $a_1, \ldots, a_{|Q_c|}$, append $d_c := TRUE$ to \mathscr{D} and proceed as follows. For every $i \in \{1, \ldots, |Q_c| - 1\}$ so that, in $Q_c \setminus \{a_1, \ldots, a_{i-1}\}$, a_i is a minimal element that is not irreducible, but retractable to the minimal element a_{i+j} of $Q_c \setminus \{a_1, \ldots, a_{i-1}\}$, check if $\uparrow a_i \cap \uparrow a_{i+j}$ is already listed in \mathscr{S} . If not, append $\uparrow a_i \cap \uparrow a_{i+j}$ to \mathscr{S} .
- 5. Increase c by 1 and continue at 3.

Fixed Point Property	Retractable Points	Dimension 2	d2-collapsibility	Open Questions

Theorem.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

d2-collapsibility

Theorem. *Let P be a finite ordered set.*

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi
d2-collapsibility

osibility

lgorithm

Open Questions

Theorem. *Let P be a finite ordered set. Then* **D2CCcheck** *applied to P terminates in polynomial time.*

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

d2-collapsibility

sibility

Algorithm

Open Questions

Theorem. *Let P be a finite ordered set. Then* **D2CCcheck** *applied to P terminates in polynomial time. Moreover,*

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Fixed Point Property

Dimension 2

d2-collapsibility

sibility

Algorithm

Open Questions

Theorem. *Let P be a finite ordered set. Then* **D2CCcheck** *applied to P terminates in polynomial time. Moreover,*

1. *P* is d2-connectedly collapsible iff all entries of \mathcal{D} are *TRUE*.

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Fixed Point Property

Theorem. *Let P be a finite ordered set. Then* **D2CCcheck** *applied to P terminates in polynomial time. Moreover,*

- 1. *P* is d2-connectedly collapsible iff all entries of \mathcal{D} are *TRUE*.
- 2. P is d2-collapsible, but not d2-connectedly collapsible iff

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

Theorem. *Let P be a finite ordered set. Then* **D2CCcheck** *applied to P terminates in polynomial time. Moreover,*

- 1. *P* is d2-connectedly collapsible iff all entries of \mathcal{D} are *TRUE*.
- 2. *P* is d2-collapsible, but not d2-connectedly collapsible iff all entries of *D* are TRUE or AC.

Theorem. *Let P be a finite ordered set. Then* **D2CCcheck** *applied to P terminates in polynomial time. Moreover,*

- 1. *P* is d2-connectedly collapsible iff all entries of \mathcal{D} are *TRUE*.
- 2. *P* is d2-collapsible, but not d2-connectedly collapsible iff all entries of *D* are TRUE or AC.
- 3. *P* is not d2-collapsible iff $\mathcal{D}(P)$ has an entry NO.

d2-collapsibility

The Algorithm

Final Comments

Bernd Schröder

Department of Mathematics, The University of Southern Mississippi

1. This idea generalizes, but not to all collapsible ordered sets.

 This idea generalizes, but not to all collapsible ordered sets. The problem is that the sets that need to be checked recursively can, in general, be of the form (\$\$\opprox a_1 ∩ \$\$\$b_1\$)

 This idea generalizes, but not to all collapsible ordered sets. The problem is that the sets that need to be checked recursively can, in general, be of the form (\$\$\phi\$ a₁ ∩ \$\$\$b₁\$) ∩ (\$\$\$\$a₂ ∩ \$\$\$b₂\$)

- This idea generalizes, but not to all collapsible ordered sets. The problem is that the sets that need to be checked recursively can, in general, be of the form
 (↑ a₁ ∩ ↑ b₁) ∩ (↑ a₂ ∩ ↑ b₂) ∩ … ∩ (↑ a_m ∩ ↑ b_m).
- 2. Let *P* be a finite ordered set that does not contain any crowns with more than 4 elements.

- This idea generalizes, but not to all collapsible ordered sets. The problem is that the sets that need to be checked recursively can, in general, be of the form
 (↑ a₁ ∩ ↑ b₁) ∩ (↑ a₂ ∩ ↑ b₂) ∩ … ∩ (↑ a_m ∩ ↑ b_m).
- 2. Let *P* be a finite ordered set that does not contain any crowns with more than 4 elements. Must *P* be d2-collapsible?