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Motivation

Let R =
⊕∞

k=0 Rk be a finitely generated graded algebra over a field K = R0. Let

HilbR(t) =
∞∑
k=0

tk dimK Rk

denote the Hilbert series of R.

The Hilbert series converges on |t| < 1 and can be expressed in the form

HilbR(t) =
h(t)

(1− tm1)(1− tm2) · · · (1− tms )
, h(t) ∈ Z[t].

If dimR > 0, then HilbR(t) has a pole at t = 1 and hence admits a Laurent
expansion

HilbR(t) =
∞∑
k=0

γk(1− t)k−dimR =
γ0

(1− t)dimR
+

γ1
(1− t)dimR−1 + · · ·
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Motivation

If G < GL(V ) is a finite group and

R = K[V ]G = {p ∈ K[V ] : p(gv) = p(v) ∀g ∈ G}

are the polynomial invariants

, then using Molien’s formula, it is easy to show that

γ0 =
1

|G |
,

and
2γ1
γ0

= #{pseudoreflections in G},

where a pseudoreflection is a g ∈ G such that V g has codimension 1.
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Motivation

For certain rings (the ring of regular functions on a linear symplectic quotient)

,
experiments indicate that the Laurent coefficients of the Hilbert series γk satisfy

m−1∑
k=0

(−1)k
(
m − 1

k

)
γm+k = 0, m ≥ 1. (1)

Definition A formal power series ϕ(x) =
∑∞

k=0 γkx
k ∈ C[[x ]] is symplectic if it

satisfies Equation (1) for each m ≥ 1.

A rational function ψ(t) is symplectic at a ∈ C of order d ∈ Z if

xdψ(a− x) ∈ C[[x ]]

is symplectic.
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Shift 0

Theorem (Herbig–Herden–S., 2015) For a formal power series
ϕ(x) ∈ C[[y ]] =

∑∞
k=0 γkx

k , the following are equivalent.

ϕ(x) is symplectic, i.e. for each m ≥ 1,

m−1∑
k=0

(−1)k
(
m − 1

k

)
γm+k = 0.

There is a ρ(y) ∈ C[[y ]] such that ϕ(x) = ρ
(

x2

1−x

)
. If ϕ(x) is rational, then

ρ(y) is rational as well.

ϕ(x) = ϕ
(

x
x−1

)
.
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Shift 0

Corollary A rational function ψ(t) is symplectic of order d at t = a ∈ C if and
only if

ψ

(
a2 − 2a + (1− a)t

a− 1− t

)
= (a− 1− t)dψ(t).

For a = 1, this condition is ψ(1/t) = (−1)d(t)dψ(t).

Theorem (Stanley, 1978) A graded Cohen-Macaulay algebra R is Gorenstein if
and only if HilbR(t) satisfies

HilbR(1/t) = (−1)d t−a(R) HilbR(t)

where d is the Krull dimension and −a(R) is the a-invariant.

The shift of a Gorenstein algebra R is r := −(d + a(R)), hence d = −a(R)
corresponds to a shift of 0.

Corollary A graded Cohen-Macaulay algebra R is Gorenstein with shift 0 if and
only if HilbR(t) is symplectic of order dimR at t = 1.

C. Seaton (Rhodes College) Hilbert series of Gorenstein rings November 15th, 2015 6 / 20



Shift 0

Corollary A rational function ψ(t) is symplectic of order d at t = a ∈ C if and
only if

ψ

(
a2 − 2a + (1− a)t

a− 1− t

)
= (a− 1− t)dψ(t).

For a = 1, this condition is ψ(1/t) = (−1)d(t)dψ(t).

Theorem (Stanley, 1978) A graded Cohen-Macaulay algebra R is Gorenstein if
and only if HilbR(t) satisfies

HilbR(1/t) = (−1)d t−a(R) HilbR(t)

where d is the Krull dimension and −a(R) is the a-invariant.

The shift of a Gorenstein algebra R is r := −(d + a(R)), hence d = −a(R)
corresponds to a shift of 0.

Corollary A graded Cohen-Macaulay algebra R is Gorenstein with shift 0 if and
only if HilbR(t) is symplectic of order dimR at t = 1.

C. Seaton (Rhodes College) Hilbert series of Gorenstein rings November 15th, 2015 6 / 20



Shift 0

Corollary A rational function ψ(t) is symplectic of order d at t = a ∈ C if and
only if

ψ

(
a2 − 2a + (1− a)t

a− 1− t

)
= (a− 1− t)dψ(t).

For a = 1, this condition is ψ(1/t) = (−1)d(t)dψ(t).

Theorem (Stanley, 1978) A graded Cohen-Macaulay algebra R is Gorenstein if
and only if HilbR(t) satisfies

HilbR(1/t) = (−1)d t−a(R) HilbR(t)

where d is the Krull dimension and −a(R) is the a-invariant.

The shift of a Gorenstein algebra R is r := −(d + a(R)), hence d = −a(R)
corresponds to a shift of 0.

Corollary A graded Cohen-Macaulay algebra R is Gorenstein with shift 0 if and
only if HilbR(t) is symplectic of order dimR at t = 1.

C. Seaton (Rhodes College) Hilbert series of Gorenstein rings November 15th, 2015 6 / 20



Shift 0

Corollary A rational function ψ(t) is symplectic of order d at t = a ∈ C if and
only if

ψ

(
a2 − 2a + (1− a)t

a− 1− t

)
= (a− 1− t)dψ(t).

For a = 1, this condition is ψ(1/t) = (−1)d(t)dψ(t).

Theorem (Stanley, 1978) A graded Cohen-Macaulay algebra R is Gorenstein if
and only if HilbR(t) satisfies

HilbR(1/t) = (−1)d t−a(R) HilbR(t)

where d is the Krull dimension and −a(R) is the a-invariant.

The shift of a Gorenstein algebra R is r := −(d + a(R)), hence d = −a(R)
corresponds to a shift of 0.

Corollary A graded Cohen-Macaulay algebra R is Gorenstein with shift 0 if and
only if HilbR(t) is symplectic of order dimR at t = 1.

C. Seaton (Rhodes College) Hilbert series of Gorenstein rings November 15th, 2015 6 / 20



Shift 0

Corollary A rational function ψ(t) is symplectic of order d at t = a ∈ C if and
only if

ψ

(
a2 − 2a + (1− a)t

a− 1− t

)
= (a− 1− t)dψ(t).

For a = 1, this condition is ψ(1/t) = (−1)d(t)dψ(t).

Theorem (Stanley, 1978) A graded Cohen-Macaulay algebra R is Gorenstein if
and only if HilbR(t) satisfies

HilbR(1/t) = (−1)d t−a(R) HilbR(t)

where d is the Krull dimension and −a(R) is the a-invariant.

The shift of a Gorenstein algebra R is r := −(d + a(R)), hence d = −a(R)
corresponds to a shift of 0.

Corollary A graded Cohen-Macaulay algebra R is Gorenstein with shift 0 if and
only if HilbR(t) is symplectic of order dimR at t = 1.

C. Seaton (Rhodes College) Hilbert series of Gorenstein rings November 15th, 2015 6 / 20



Alternate Symplectic Basis

The proofs of the above results involve demonstrating that the set(
x2

1− x

)n

, n ≥ 0

forms a symplectic basis for the algebra of symplectic power series.

There are other symplectic bases.

Definition The Euler polynomials En(x), n ≥ 0 are defined by

2ext

et + 1
=
∞∑
n=0

En(x)
tn

n!
.

Define
[
n
k

]
by

x
(
x2n − E2n(x)

)
=:

2n∑
k=0

[
n

i

]
x2k ,

i.e.
[
n
k

]
is the kth odd degree coefficient of the (2n)th Euler polynomial.
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Alternate Symplectic Basis

The first six lines of the triangle of the
[
n
k

]
:

1
−1 2

3 −5 3
−17 28 −14 4

155 −255 126 −30 5
−2073 3410 −1683 396 −55 6

Proposition Define

ψn(x) :=
1

(2n − 1)!

∞∑
k=0

(−1)k−1E
(2n−1)
k−1 (0) xk

= −x2n −
∞∑
k=n

[
k

n

]
x2k+1.

Then the ψn(x), n ≥ 0 form a symplectic basis.
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Even Coefficients Determine the Odd (Shift 0)

Theorem (Herbig–Herden–S., 2015) Let ϕ(x) =
∑∞

k=0 γk x
k be a formal power

series. Then ϕ(x) is symplectic if and only if for each n ≥ 0,

γ2n+1 =
n∑

k=0

[
n

k

]
γ2k .

Corollary For all integers n, k, ` we have[
n − k

`

]
+

[
n − `
k

]
=

[
n

k + `

]
+
∑
i

∑
r

[
n

i

][
r − 1

k

][
i − r

`

]
.
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Shift r 6= 0

Recall the Gorenstein condition

HilbR(1/t) = (−1)d t−a(R) HilbR(t).

The above results concern the case where the shift r := −(d + a(R)) = 0.

Question Are there similar families of constraints on the Laurent coefficients for
arbitrary shifts?

For the power series ϕ(x) := xd HilbR(1− x), this corresponds to

ϕ

(
x

x − 1

)
= (1− x)rϕ(x).
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Shift r > 0

Theorem (Herbig–Herden–S.) A power series ϕ(x) =
∑∞

k=0 γkx
d satisfies

ϕ

(
x

x − 1

)
= (1− x)rϕ(x)

for some r > 0 if and only if, for each m ≥ 1,

m−1∑
i=0

(−1)i
(
m − 1

i

)
γm+i−r = 0, if r is even,

m∑
i=0

(−1)i
(

2m + r − 2

m − i

)(
m + i

i

)
γm+i−1 = 0, if r is odd.
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Shift r = 1

1 2 0
0 3 9 6 0
0 0 10 40 50 20 0
0 0 0 35 175 315 245 70 0
0 0 0 0 126 756 1764 2016 1134 252 0

· · ·

Dividing by common factors in each row, the resulting nonzero coefficients are the
Lucas triangle:

1 2
1 3 2

1 4 5 2
1 5 9 7 2

1 6 14 16 9 2
· · ·
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Shift r > 0 odd

r = 3 :

3 2 0
0 10 15 6 0
0 0 35 84 70 20 0
0 0 0 126 420 540 315 70 0
0 0 0 0 462 1980 3465 3080 1386 252 0

· · ·

r = 5 :

5 2 0
0 21 21 6 0
0 0 84 144 90 20 0
0 0 0 330 825 825 385 70 0
0 0 0 0 1287 4290 6006 4368 1638 252 0

· · ·
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Shift r < 0

Theorem (Herbig–Herden–S.) A power series ϕ(x) =
∑∞

k=0 γkx
d satisfies

ϕ

(
x

x − 1

)
= (1− x)rϕ(x)

for some r < 0 if and only if, for 1 ≤ m ≤ d−r/2e,

m∑
i=0

(1− r −m − i)! (m + i)!

(m − i)! i !
γm+i−1 = 0

,

and, for each m ≥ 1:

m−1∑
i=0

(−1)i
(
m − 1

i

)
γm+i−r = 0, if r is even,

m−1∑
i=0

(−1)i
(

2m − 1

m − i

)(
m + i

i

)
γm+i−r+1 = 0, if r is odd.
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Shift r < 0
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Shift r = −6

720 −240 0
0 120 −144 72 0
0 0 24 −72 120 −120 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1 2 1 0

· · ·

Or:
3 −1 0
0 5 −6 3 0
0 0 1 −3 5 −5 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1 2 1 0

· · ·
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Shift r = −5

120 −48 0
0 24 −36 24 0
0 0 6 −24 60 −120 0
0 0 0 0 0 1 2 0
0 0 0 0 0 0 3 9 6 0
0 0 0 0 0 0 0 10 40 50 20 0

· · ·

Or:
5 −2 0
0 2 −3 2 0
0 0 1 −4 10 −20 0
0 0 0 0 0 1 2 0
0 0 0 0 0 0 1 3 2 0
0 0 0 0 0 0 0 1 4 5 2 0

· · ·
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Shift r 6= 0: Generators

Theorem (Herbig–Herden–S.) Let Fr denote the collection of power series that
satisfy

ϕ

(
x

x − 1

)
= (1− x)rϕ(x).

Then F0 is algebra-generated by x2/(1− x), and each Fr is a F0-module
generated by (x − 2)r .

Hence F =
⊕
r∈Z
Fr is a Z-graded algebra generated by x2/(1− x) and x − 2.
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Shift r 6= 0: Even Coefficients Determine the Odd

Definition Define
{
n
k

}
by

x
(
x2n+1 − E2n+1(x)

)
=:

2n+1∑
k=0

{
n

k

}
x2k ,

i.e.
{
n
k

}
is the kth even degree coefficient of the (2n + 1)st Euler polynomial.

The first six lines of the triangle of the
{
n
k

}
:

1
2

− 1
4

3
2

1
2 − 5

2
5
2

− 17
8

21
2 − 35

4
7
2

31
2 − 153

2 63 −21 9
2

− 691
4

1705
2 − 2805

4 231 − 165
4

11
2
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Shift r 6= 0: Even Coefficients Determine the Odd
Theorem (Herbig–Herden–S.) ϕ(x) =

∞∑
k=0

γkx
k ∈ Fr if and only if:

γ2n+1 =
n∑

k=0

{
n + m

k + m

}
γ2k n ≥ 0, r = 2m + 1 > 0

,

γ2n−2m+1 =
n∑

k=0

[
n

k

]
γ2k−2m n ≥ 0, r = 2m > 0,

γ2n+2k+1 =
n∑

k=0

{
n

k

}
γ2m+2k , n ≥ 0,

and γ2n+1 = −
n∑

k=0

{
m − k − 1

m − n − 1

}
γ2k , 0 ≤ n ≤ m − 1, r = −2m + 1 < 0,

γ2m+2n+1 =
n∑

k=0

[
n

k

]
γ2m+2k , n ≥ 0,

and γ2n+1 = −
n∑

k=0

[
m − k

m − n

]
γ2k , 0 ≤ n ≤ m − 1, r = −2m < 0.
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Thank you!
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