Multiplicative Zagreb indices of Cactus graphs

Shaohui Wang* and Bing Wei

Nov 15, 2015 4th Mississippi Discrete Math workshop

Introduction

- Introduction
 - Cactus graphs
 - Zagreb Index and Multiplicative Zagreb Index

- Introduction
 - Cactus graphs
 - Zagreb Index and Multiplicative Zagreb Index
- Our results

- Introduction
 - Cactus graphs
 - Zagreb Index and Multiplicative Zagreb Index
- Our results
- Some proofs

Definition

A graph is a cactus if it is connected and all of its blocks are either edges or cycles, i.e., any two of its cycles have at most one common vertex.

Definition

A graph is a cactus if it is connected and all of its blocks are either edges or cycles, i.e., any two of its cycles have at most one common vertex.

Definition

Since every cactus graph may have some pendant vertices which connect to one vertex only, then set \mathbb{C}_n^k to denote a set of cactus graphs with *n* vertices including *k* pendant vertices, where $n \ge k \ge 0$.

Definition

Since every cactus graph may have some pendant vertices which connect to one vertex only, then set \mathbb{C}_n^k to denote a set of cactus graphs with *n* vertices including *k* pendant vertices, where $n \ge k \ge 0$.

 In 1969, Cornuéjols and Pulleyblank used the constructure of another triangular cactus to find the equivalent conditions for the existence of {K₂, C_n, n ≥ 4}-factor.

- In 1969, Cornuéjols and Pulleyblank used the constructure of another triangular cactus to find the equivalent conditions for the existence of {K₂, C_n, n ≥ 4}-factor.
- Lin et al.(2007), Liu and Lu (2008) obtained some sharp bounds of several chemical indices of cactus graphs, such as Wiener index, Merrifield-Simmons index, Hosoya index and Randić index.

- In 1969, Cornuéjols and Pulleyblank used the constructure of another triangular cactus to find the equivalent conditions for the existence of {K₂, C_n, n ≥ 4}-factor.
- Lin et al.(2007), Liu and Lu (2008) obtained some sharp bounds of several chemical indices of cactus graphs, such as Wiener index, Merrifield-Simmons index, Hosoya index and Randić index.
- In 2012, Li et al. gave the upper bounds on Zagreb indices of cactus graphs and lower bounds of cactus graph with at least one cycle.

• Feng and Yu(2014) established the cacti in $\mathcal{C}_{n,k}$ with the smallest hyper-Wiener indices, which is a renovated version of Wiener index.

- Feng and Yu(2014) established the cacti in $\mathcal{C}_{n,k}$ with the smallest hyper-Wiener indices, which is a renovated version of Wiener index.
- Wang and Tan(2015) characterized the extremal cacti having the largest Wiener and hyper-Wiener indices among the class $\mathcal{C}_{n,k}$.

- Feng and Yu(2014) established the cacti in $\mathcal{C}_{n,k}$ with the smallest hyper-Wiener indices, which is a renovated version of Wiener index.
- Wang and Tan(2015) characterized the extremal cacti having the largest Wiener and hyper-Wiener indices among the class $C_{n,k}$.
- Wang and Kang(2015) found the extremal bounds of another chemical index of Harary index for the cacti C_{n,k}.

What something else could be found on cactus graphs?

Zagreb Indices

Definition (Gutman and Trinajsti 1972)

The first and second **Zagreb indices** of the graph G = (V, E) are defined as

$$M_1 = \sum_{v \in V(G)} d(v)^2; M_2 = \sum_{uv \in E(G)} d(u)d(v).$$

Zagreb Indices

Definition (Gutman and Trinajsti 1972)

The first and second **Zagreb indices** of the graph G = (V, E) are defined as

$$M_1 = \sum_{v \in V(G)} d(v)^2; M_2 = \sum_{uv \in E(G)} d(u)d(v).$$

Definition (Todeschini, et al.2010 and Wang, Wei 2015)

The first **generalized** and second **Multiplicative Zagreb** indices of graph G = (V, E) are defined as follows: for any real number c > 0,

$$\prod_{1,c}(G) = \prod_{v \in V(G)} d(v)^c;$$

$$\prod_{2}(G) = \prod_{uv \in E(G)} d(u)d(v)$$

Î

Zagreb Indices

Definition (Gutman and Trinajsti 1972)

The first and second **Zagreb indices** of the graph G = (V, E) are defined as

$$M_1 = \sum_{v \in V(G)} d(v)^2; M_2 = \sum_{uv \in E(G)} d(u)d(v).$$

Definition (Todeschini, et al.2010 and Wang, Wei 2015)

The first **generalized** and second **Multiplicative Zagreb** indices of graph G = (V, E) are defined as follows: for any real number c > 0,

$$\prod_{1,c}(G) = \prod_{v \in V(G)} d(v)^c;$$

$$\prod_{2}(G) = \prod_{uv \in E(G)} d(u)d(v) = \prod_{v \in V(G)} d(v)^{d(v)}.$$

 For general graphs, a lower bound of a chemical index, Randić index = ∑_{uv∈E(G)}[d(u)d(v)]^{-1/2}, was given by Bollobás and Erdös(1998), while an upper bound was presented by Lu. et al in 2004.

- For general graphs, a lower bound of a chemical index, Randić index = $\sum_{uv \in E(G)} [d(u)d(v)]^{-\frac{1}{2}}$, was given by Bollobás and Erdös(1998), while an upper bound was presented by Lu. et al in 2004.
- In 2004, Das applied the minimal and maximal degree to obtain the upper bound for the sum of the squares of the degrees of a graph, the first Zagreb index.

- For general graphs, a lower bound of a chemical index, Randić index = $\sum_{uv \in E(G)} [d(u)d(v)]^{-\frac{1}{2}}$, was given by Bollobás and Erdös(1998), while an upper bound was presented by Lu. et al in 2004.
- In 2004, Das applied the minimal and maximal degree to obtain the upper bound for the sum of the squares of the degrees of a graph, the first Zagreb index.
- In 2010, Zhao and Li provided the maximal Zagreb index of graphs with k cut vertices.

• Das and Gutman (2004) gave the sharp upper and lower bounds of Zagreb indices of trees, respectively.

- Das and Gutman (2004) gave the sharp upper and lower bounds of Zagreb indices of trees, respectively.
- Gutman (2011) gave the sharp upper and lower bounds of Multiplicative Zagreb indices of trees, respectively.

- Das and Gutman (2004) gave the sharp upper and lower bounds of Zagreb indices of trees, respectively.
- Gutman (2011) gave the sharp upper and lower bounds of Multiplicative Zagreb indices of trees, respectively.
- Estes and Wei (2014) gave the sharp upper and lower bounds of Zagreb indices of *k*-trees, a generalization of a tree, respectively.

- Das and Gutman (2004) gave the sharp upper and lower bounds of Zagreb indices of trees, respectively.
- Gutman (2011) gave the sharp upper and lower bounds of Multiplicative Zagreb indices of trees, respectively.
- Estes and Wei (2014) gave the sharp upper and lower bounds of Zagreb indices of *k*-trees, a generalization of a tree, respectively.
- Wang and Wei (2015) gave the sharp upper and lower bounds of Generalized Multiplicative Zagreb indices of *k*-trees, respectively.

o

Our results

- Li et al.(2012) gave some bounds on Zagreb indices of cactus graphs.
- Now we obtained the sharp upper and lower bounds of Multiplicative Zagreb indices for cactus graphs and characterize the graphs achieved such bounds.

For any graph G in \mathcal{C}_n^k ,

$$\prod_{1,c} (G) \geq \begin{cases} 3^{kc} 2^{(n-2k)c} & \text{if } k = 0, 1, \\ 2^{(n-k-1)c} k^c & \text{if } k \ge 2. \end{cases}$$

the equalities hold if and only if their degree sequences are $\underbrace{3, 3, ..., 3}_{k}, \underbrace{2, 2, ..., 2}_{n-2k}, \underbrace{1, 1, ..., 1}_{k}$ and $k, \underbrace{2, 2, ..., 2}_{n-k-1}, \underbrace{1, 1, ..., 1}_{k}$, respectively.

For any graph G in \mathbb{C}_n^k with $n \leq k+3$,

$$\prod_{1,c} (G) \leq \begin{cases} k^c & \text{if } n = k+1, \\ (\lceil \frac{k}{3} \rceil + 2)^c (\lfloor \frac{k}{3} \rfloor + 2)^c (k - \lceil \frac{k}{3} \rceil - \lfloor \frac{k}{3} \rfloor + 2)^c & \text{if } n = k+3, \end{cases}$$

the equalities hold if and only if their degree sequences are $k, \underbrace{1, 1, ..., 1}_{k}$; $\lceil \frac{k}{2} \rceil + 1, \lfloor \frac{k}{2} \rfloor + 1, \underbrace{1, 1, ..., 1}_{k}$ and $\lceil \frac{k}{3} \rceil + 2, \lfloor \frac{k}{3} \rfloor + 2, k - \lceil \frac{k}{3} \rceil - \lfloor \frac{k}{3} \rfloor + 2, \underbrace{1, 1, ..., 1}_{k}$, respectively.

For any graph G in \mathbb{C}_n^k with $n \ge k + 4$ and $t \ge 0$,

$$\prod_{1,c} (G) \leq \begin{cases} 16^c & \text{if } k = 0, n = 4, \\ 2^{(3t+6)c} & \text{if } k = 0, n = 2t+5, \\ 2^{(3t+4)c}9^c & \text{if } k = 0, n = 2(t+3) \end{cases}$$

the equalities hold if and only if their degree sequences are 2, 2, 2, 2; $\underbrace{4,4,...,4}_{t+1}, \underbrace{2,2,...,2}_{t+4}$ and $\underbrace{4,4,...,4}_{t}, 3, 3, \underbrace{2,2,...,2}_{t+4}$, respectively; For $k \neq 0$, if $\prod_{1,c}(G)$ attains the maximal value, then one of the following statements holds: For any nonpendant vertices u, v, either (i) $|d(u) - d(v)| \leq 1$ or (ii) $d(u) \in \{2,3,4\}$ and G contains no cycles of length greater than 3, no dense paths of length greater than 1 except for at most one of them with length 2, no paths of length greater 0 that connects only two cycles except for at most one of them with length 1.

For any graph G in \mathcal{C}_n^k with $\gamma = \frac{k-2}{n-k}$,

$$\prod_{2}(G) \geq \begin{cases} 3^{3k}2^{2(n-2k)} & \text{if } k = 0, 1, \\ (2 + \lceil \gamma \rceil)^{(2 + \lceil \gamma \rceil)[k-2-\lfloor \gamma \rfloor(n-k)]} & \\ (2 + \lfloor \gamma \rfloor)^{(2+\lfloor \gamma \rfloor)[n-2k+2+\lfloor \gamma \rfloor(n-k)]} & \text{if } k \ge 2, \end{cases}$$

the equalities hold if and only if their degree sequences are

$$\underbrace{3,3,...,3}_{k},\underbrace{2,2,...,2}_{n-2k},\underbrace{1,1,...,1}_{k} \text{ and}$$

$$\underbrace{2+\lceil\gamma\rceil,2+\lceil\gamma\rceil,...,2+\lceil\gamma\rceil}_{k-2-\lfloor\gamma\rfloor(n-k)},\underbrace{2+\lfloor\gamma\rfloor,2+\lfloor\gamma\rfloor,...,2+\lfloor\gamma\rfloor}_{n-2k+2+\lfloor\gamma\rfloor(n-k)},\underbrace{1,1,...,1}_{k},$$
respectively.

For any graph G in \mathcal{C}_n^k ,

$$\prod_{2} (G) \leq \begin{cases} (n-2)^{n-2} 2^{2(n-k-1)} & \text{if } n-k \equiv 0 \pmod{2}, \\ (n-1)^{n-1} 2^{2(n-k-1)} & \text{if } n-k \equiv 1 \pmod{2}, \end{cases}$$

the equalities hold if and only if their degree sequences are $n-2, \underbrace{2, 2, ..., 2}_{n-k-1}, \underbrace{1, 1, ..., 1}_{k}$ and $n-1, \underbrace{2, 2, ..., 2}_{n-k-1}, \underbrace{1, 1, ..., 1}_{k}$, respectively.

- The function $f(x) = \frac{x}{x+m}$ is strictly increasing for $x \in [0, \infty)$, where m is a positive integer.
- The function $g(x) = \frac{x^x}{(x+m)^{x+m}}$ is strictly decreasing for $x \in [0, \infty)$, where *m* is a positive integer.

Theorem 1 is to obtain the sharp lower bound of ∏_{1,c}(G) on cactus graphs.

- Theorem 1 is to obtain the sharp lower bound of $\prod_{1,c}(G)$ on cactus graphs.
- For any graph G in \mathbb{C}_n^k , if n = 1 or 2, then $\prod_{1,c}(G) = \prod_2(G) = 0$ or 1, done. Next we condiser $n \ge 3$.

- Theorem 1 is to obtain the sharp lower bound of $\prod_{1,c}(G)$ on cactus graphs.
- For any graph G in \mathbb{C}_n^k , if n = 1 or 2, then $\prod_{1,c}(G) = \prod_2(G) = 0$ or 1, done. Next we condiser $n \ge 3$.
- Choose a graph G in \mathbb{C}_n^k such that $\prod_{1,c}(G)$ achieves the minimal value.

- Theorem 1 is to obtain the sharp lower bound of ∏_{1,c}(G) on cactus graphs.
- For any graph G in \mathbb{C}_n^k , if n = 1 or 2, then $\prod_{1,c}(G) = \prod_2(G) = 0$ or 1, done. Next we condiser $n \ge 3$.
- Choose a graph G in C^k_n such that ∏_{1,c}(G) achieves the minimal value.
- If k = 0 or 1, then G must be an unicyclic graph.

• If G is not unicyclic, after the transforming, obtain a new graph G' such that $\prod_{1,c}(G') < \prod_{1,c}(G)$, a contradiction to the choice of G.

Why G would be unicyclic?

• If G is not unicyclic, after the transforming, obtain a new graph G' such that $\prod_{1,c}(G') < \prod_{1,c}(G)$, a contradiction to the choice of G.

• Thus, G must be unicyclic for k = 0 or 1.

Why G would be unicyclic?

• If G is not unicyclic, after the transforming, obtain a new graph G' such that $\prod_{1,c}(G') < \prod_{1,c}(G)$, a contradiction to the choice of G.

Why G would be unicyclic?

• If G is not unicyclic, after the transforming, obtain a new graph G' such that $\prod_{1,c}(G') < \prod_{1,c}(G)$, a contradiction to the choice of G.

• Thus, G must be unicyclic for k = 0 or 1.

• If k = 0, then G is a cycle, that is, the degree sequence of G is $\underbrace{2, 2, ..., 2}_{n}$.

- If k = 0, then G is a cycle, that is, the degree sequence of G is $\underbrace{2, 2, ..., 2}_{n}$.
- If k = 1, then G has only one pendant path, that is, the degree sequence of G is 3, 2, 2, ..., 2, 1.

- If k = 0, then G is a cycle, that is, the degree sequence of G is $\underbrace{2, 2, ..., 2}_{n}$.
- If k = 1, then G has only one pendant path, that is, the degree sequence of G is 3, 2, 2, ..., 2, 1.
- If $k \ge 2$, by the choice of G, we see that G is a tree.

 If G has a cycle and k ≥ 2, after the transforming, obtain a new graph G' such that ∏_{1,c}(G') < ∏_{1,c}(G), a contradiction to the choice of G.

 If G has a cycle and k ≥ 2, after the transforming, obtain a new graph G' such that ∏_{1,c}(G') < ∏_{1,c}(G), a contradiction to the choice of G.

• For k = 2, G is a path, that is, the degree sequence of G is $\underbrace{2, 2, ..., 2}_{n-2}, 1, 1$, done. Next we consider $k \ge 3$.

 If G has a cycle and k ≥ 2, after the transforming, obtain a new graph G' such that ∏_{1,c}(G') < ∏_{1,c}(G), a contradiction to the choice of G.

• If G has a cycle and $k \ge 2$, after the transforming, obtain a new graph G' such that $\prod_{1,c}(G') < \prod_{1,c}(G)$, a contradiction to the choice of G.

• For k = 2, G is a path, that is, the degree sequence of G is 2, 2, ..., 2, 1, 1, done. Next we consider $k \ge 3$.

d(v) ≤ k for any v ∈ V(G). Otherwise, if there is a vertex v with d(v) ≥ k + 1, since G is a tree, then G has more than k pendant vertices, a contradiction to the choice of G.

- d(v) ≤ k for any v ∈ V(G). Otherwise, if there is a vertex v with d(v) ≥ k + 1, since G is a tree, then G has more than k pendant vertices, a contradiction to the choice of G.
- Let v be the vertex with maximal degree Δ , if $\Delta = k$, then G v is a set of paths. Otherwise, there exists a vertex $u \in V(G) \{v\}$ such that $d(u) \ge 3$ and since G is a tree, then G contains more than k pendant vertices, a contradiction to the choice of G. Thus, the degree sequence of G is $k, \underbrace{2, 2, ..., 2}_{n-k-1}, \underbrace{1, 1, ..., 1}_{k}$.

- d(v) ≤ k for any v ∈ V(G). Otherwise, if there is a vertex v with d(v) ≥ k + 1, since G is a tree, then G has more than k pendant vertices, a contradiction to the choice of G.
- Let v be the vertex with maximal degree Δ , if $\Delta = k$, then G v is a set of paths. Otherwise, there exists a vertex $u \in V(G) \{v\}$ such that $d(u) \ge 3$ and since G is a tree, then G contains more than k pendant vertices, a contradiction to the choice of G. Thus, the degree sequence of G is $k, \underbrace{2, 2, ..., 2}_{n-k-1}, \underbrace{1, 1, ..., 1}_{k}$.
- If Δ < k, then G contains at least 2 cut vertices, say u₁, u₂, ..., u_t, such that G − u_i has at least 3 components with i ∈ [1, t] and t ≥ 2. Otherwise, since G is a tree, G only contains Δ < k pendant vertices, a contradiction.

• Let $P = w_1 w_2 \dots w_{s'} w_s$ be a path of $G - \{u_1, u_2, \dots, u_t\}$ such that $w_s \in \{u_1, u_2, \dots, u_t\} - \{v\}$ and P contains only a unique pendant vertex w_1 .

• Let $P = w_1 w_2 \dots w_{s'} w_s$ be a path of $G - \{u_1, u_2, \dots, u_t\}$ such that $w_s \in \{u_1, u_2, \dots, u_t\} - \{v\}$ and P contains only a unique pendant vertex w_1 .

• Set $G' = (G - \{w_{s'}w_s\}) \cup \{w_{s-1}v\}.$

• Let $P = w_1 w_2 \dots w_{s'} w_s$ be a path of $G - \{u_1, u_2, \dots, u_t\}$ such that $w_s \in \{u_1, u_2, \dots, u_t\} - \{v\}$ and P contains only a unique pendant vertex w_1 .

• Set $G' = (G - \{w_{s'}w_s\}) \cup \{w_{s-1}v\}.$

Using analytic tool

•
$$d_{G'}(v) = d(v) + 1 = \Delta + 1$$
 and $d_{G'}(w_s) = d(w_s) - 1$, since $G' = (G - \{w_{s'}w_s\}) \cup \{w_{s-1}v\}.$

Using analytic tool

•
$$d_{G'}(v) = d(v) + 1 = \Delta + 1$$
 and $d_{G'}(w_s) = d(w_s) - 1$, since $G' = (G - \{w_{s'}w_s\}) \cup \{w_{s-1}v\}.$

• By the first analytic tool, we have

$$\frac{\prod_{1,c}(G)}{\prod_{1,c}(G')} = \frac{\Delta^c d(w_s)^c}{(\Delta+1)^c (d(w_s)-1)^c} = \frac{\frac{\Delta^c}{(\Delta+1)^c}}{\frac{[d(w_s)-1]^c}{d(w_s)^c}} > 1,$$

a contradiction with the choice of G.

Once the maximal degree of G' is still less than k, then we can continue this process until Δ = k, thus we can find the desired graph with the degree sequence of k, 2, 2, ..., 2, 1, 1, ..., 1.

n-k-1

Once the maximal degree of G' is still less than k, then we can continue this process until Δ = k, thus we can find the desired graph with the degree sequence of k, 2, 2, ..., 2, 1, 1, ..., 1.

Sketch of remaining proofs

Sketch of remaining proofs

The proofs of Theorems 2-5:

 If ∏_{1,c}(G) attains the maximal, by "Arithmetic-Mean and Geometric-Mean inequality: x₁x₂...x_n ≤ (x₁+x₂+...+x_n)ⁿ, the equality holds if and only if x₁ = x₂ = ... = x_n", it is not hard to obtain our result.

Sketch of remaining proofs

- If $\prod_{1,c}(G)$ attains the maximal, by "Arithmetic-Mean and Geometric-Mean inequality: $x_1x_2...x_n \leq (\frac{x_1+x_2+...+x_n}{n})^n$, the equality holds if and only if $x_1 = x_2 = ... = x_n$ ", it is not hard to obtain our result.
- For \prod_2 , choose a graph G in \mathbb{C}_n^k such that $\prod_2(G)$ achieves the maximal or minimal value.

- If $\prod_{1,c}(G)$ attains the maximal, by "Arithmetic-Mean and Geometric-Mean inequality: $x_1x_2...x_n \leq (\frac{x_1+x_2+...+x_n}{n})^n$, the equality holds if and only if $x_1 = x_2 = ... = x_n$ ", it is not hard to obtain our result.
- For \prod_2 , choose a graph G in \mathcal{C}_n^k such that $\prod_2(G)$ achieves the maximal or minimal value.
- By some transforming and using the analytic tools, we can always find a new graph such that contradicted with the assumptions.

- If ∏_{1,c}(G) attains the maximal, by "Arithmetic-Mean and Geometric-Mean inequality: x₁x₂...x_n ≤ (x₁+x₂+...+x_n)ⁿ, the equality holds if and only if x₁ = x₂ = ... = x_n", it is not hard to obtain our result.
- For \prod_2 , choose a graph G in \mathcal{C}_n^k such that $\prod_2(G)$ achieves the maximal or minimal value.
- By some transforming and using the analytic tools, we can always find a new graph such that contradicted with the assumptions.
- Done.

Thank you

