Oriented hypergraphic matrix-tree and Sachs type theorems

Lucas Rusnak

5th annual Mississippi Discrete Math Workshop

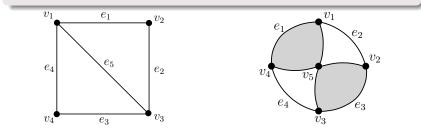
5 November 2017

Overview of objects Assiciated Matrices Graph Theorems Incidence Intricacies

Definitions

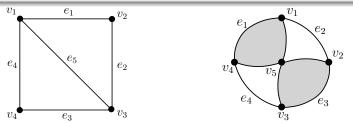
• A graph is a collections of labeled 2-subsets of V.

• A set system is a collections of labeled subsets of $\mathcal{P}(V)$.



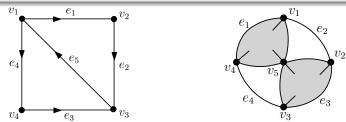
Overview of objects Assiciated Matrices Graph Theorems Incidence Intricacies

- A directed graph consists of disjoint sets V and E, and a pair of functions (σ, τ) from $E \rightarrow V$.
- An *incidence hypergraph* consists of disjoint sets V, E, and I and a function *ι* : *I* → V × E.



Overview of objects Assiciated Matrices Graph Theorems Incidence Intricacies

- A directed graph consists of disjoint sets V and E, and a pair of functions (σ, τ) from $E \rightarrow V$.
- An *incidence hypergraph* consists of disjoint sets V, E, and I and a function *ι* : *I* → V × E.

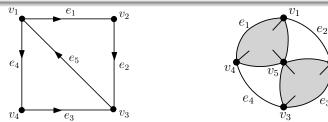


Background References Overview of objects

 v_2

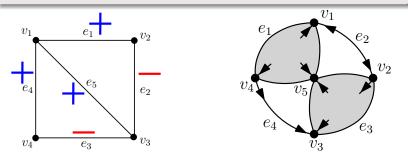
 e_3

- A graph is a collections of labeled 2-subsets of V.
- A directed graph consists of disjoint sets V and E, and a pair of functions (σ, τ) from $E \rightarrow V$.
- A set system is a collections of labeled subsets of $\mathcal{P}(V)$.
- An *incidence hypergraph* consists of disjoint sets V, E, and I and a function $\mu: I \to V \times E$.



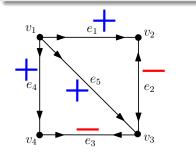
Overview of objects Assiciated Matrices Graph Theorems Incidence Intricacies

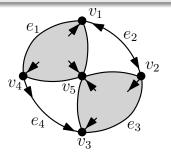
- A signed graph is a graph with an edge signing function ψ : E → {+1, -1}.
- An oriented hypergraph is an incidence hypergraph is an incidence signing function σ : I → {+1, -1}.



Overview of objects Assiciated Matrices Graph Theorems Incidence Intricacies

- A signed graph is a graph with an edge signing function ψ : E → {+1, -1}.
- An oriented hypergraph is an incidence hypergraph is an incidence signing function σ : I → {+1, -1}.



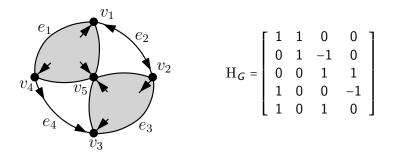


Background

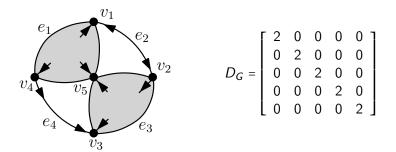
Sachs' Theorem and the Matrix-tree Theorem Categorical Insights References Overview of objects Assiciated Matrices Graph Theorems Incidence Intricacies

Associated Matrices

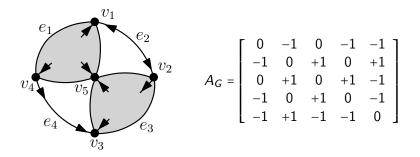
- Incidence Matrix: H_G
- Degree Matrix: D_G
- Adjacency Matrix: A_G
- Laplacian Matrix: $L_G := D_G A_G = H_G H_G^T$



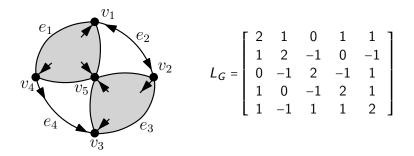
- Incidence Matrix: H_{G}
- Degree Matrix: D_G
- Adjacency Matrix: A_G
- Laplacian Matrix: $L_G := D_G A_G = H_G H_G^T$



- Incidence Matrix: H_{G}
- Degree Matrix: D_G
- Adjacency Matrix: A_G
- Laplacian Matrix: $L_G := D_G A_G = H_G H_G^T$



- Incidence Matrix: H_G
- Degree Matrix: D_G
- Adjacency Matrix: A_G
- Laplacian Matrix: $L_G := D_G A_G = H_G H_G^T$



Background

Sachs' Theorem and the Matrix-tree Theorem Categorical Insights References Overview of objects Assiciated Matrices Graph Theorems Incidence Intricacies

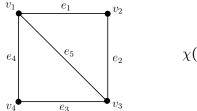
Graph Theorems

Overview of objects Assiciated Matrices Graph Theorems Incidence Intricacies

Theorem (Sachs' Theorem)

Let G be a graph, \mathcal{B}_i be the set of basic figures with exactly i isolated vertices, tf(B) be the total number of elementary figures, and cf(B) be the number of circuits in B.

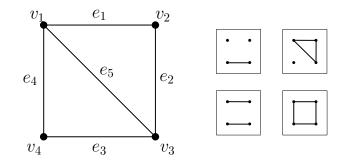
$$\chi(A_G, x) = \sum_{i=0}^{|V|} \Big(\sum_{B \in \mathcal{B}_i} (-1)^{tf(B)} (2)^{cf(B)} \Big) x^i.$$



$$\chi(A_G, x) = x^4 - 5x^2 - 4x$$

Overview of objects Assiciated Matrices Graph Theorems Incidence Intricacies

- An *elementary figure* is a circuit or a path of length 1.
- A basic figure is a disjoint union of elementary figures.

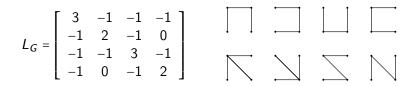


Overview of objects Assiciated Matrices Graph Theorems Incidence Intricacies

Theorem (Matrix-tree Theorem)

Let G be a graph, T(G) be the number of spanning trees of G, and L_{ij} be the ij-minor of the Laplacian, then

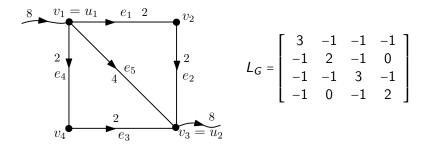
 $det(L_{ij}) = (-1)^{i+j}T(G).$



Overview of objects Assiciated Matrices Graph Theorems Incidence Intricacies

Theorem (Tutte's Transpedance Theorem)

The ordered second cofactors produce an edge labelling that satisfies Kirchhoff's Laws. Moreover, the initial energy is the in equal to the first cofactor.



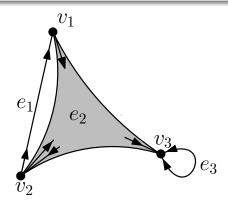
Background

Sachs' Theorem and the Matrix-tree Theorem Categorical Insights References Overview of objects Assiciated Matrices Graph Theorems Incidence Intricacies

Incidence Intricacies

Overview of objects Assiciated Matrices Graph Theorems Incidence Intricacies

- A *k*-weak walk is an incidence preserving embedding of \vec{P}_k into *G*.
- A backstep is a non-incidence-monic weak walk of length 1.



Background

Sachs' Theorem and the Matrix-tree Theorem Categorical Insights References Overview of objects Assiciated Matrices Graph Theorems Incidence Intricacies

Theorem

Let G be an oriented hypergraph,

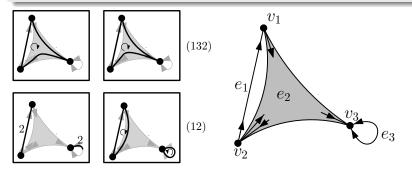
- $O D_G$ is the strictly 1-weak-walk matrix,
- 3 A_G is the 1-weak-walk matrix,
- **4** $-L_G$ is the 1-weak walk matrix,
- **G** A_G^k is the k-walk matrix,
- **6** $(-1)^k L_G^k$ is the k-weak walk matrix,

Sachs' Theorem Matrix-tree Theorem Applications

Hypergraphic Sachs-type Theorems

Sachs' Theorem Matrix-tree Theorem Applications

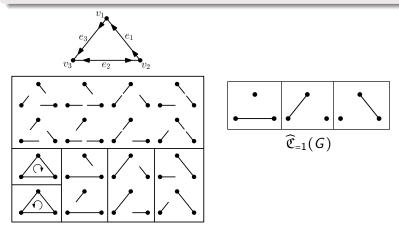
- Let $\mathfrak{C}(G)$ denote the set of contributors.



Sachs' Theorem Matrix-tree Theorem Applications

Definition

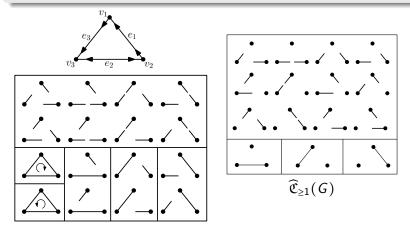
 $\mathfrak{C}_{=k}(G)$ is the set of contributors of G with exactly k backsteps. $\widehat{\mathfrak{C}}_{=k}(G)$ removes k backsteps.



Sachs' Theorem Matrix-tree Theorem Applications

Definition

 $\mathfrak{C}_{\geq k}(G)$ is the set of contributors of G with at least k backsteps. $\mathfrak{C}_{\geq k}(G)$ removes k backsteps.



Sachs' Theorem Matrix-tree Theorem Applications

Theorem (Chen, Liu, Robinson, R., Wang, 2017)

Let G be an oriented hypergraph with adjacency matrix A_G and Laplacian matrix L_G , then

$$perm(L_G) = \sum_{c \in \mathfrak{C}_{\geq 0}(G)} (-1)^{oc(c) + nc(c)},$$

2
$$det(L_G) = \sum_{c \in \mathfrak{C}_{\geq 0}(G)} (-1)^{pc(c)},$$

$$erm(A_G) = \sum_{c \in \mathfrak{C}_{=0}(G)} (-1)^{nc(c)},$$

4
$$det(A_G) = \sum_{c \in \mathfrak{C}_{=0}(G)} (-1)^{ec(c)+nc(c)}.$$

Sachs' Theorem Matrix-tree Theorem Applications

Theorem (Chen, Liu, Robinson, R., Wang, 2017)

Let G be an oriented hypergraph with adjacency matrix A_G and Laplacian matrix L_G , then

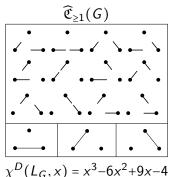
$$\chi^{P}(A_{G}, x) = \sum_{k=0}^{|V|} \left(\sum_{c \in \widehat{\mathfrak{C}}_{=k}(G)} (-1)^{oc(c)+nc(c)} \right) x^{k},$$

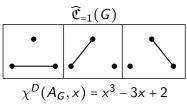
$$\chi^{D}(A_{G}, x) = \sum_{k=0}^{|V|} \left(\sum_{c \in \widehat{\mathfrak{C}}_{=k}(G)} (-1)^{pc(c)} \right) x^{k},$$

$$\chi^{P}(L_{G}, x) = \sum_{k=0}^{|V|} \left(\sum_{c \in \widehat{\mathfrak{C}}_{\geq k}(G)} (-1)^{nc(c)+bs(c)} \right) x^{k},$$

$$\chi^{D}(L_{G}, x) = \sum_{k=0}^{|V|} \left(\sum_{c \in \widehat{\mathfrak{C}}_{\geq k}(G)} (-1)^{ec(c)+nc(c)+bs(c)} \right) x^{k}.$$

Sachs' Theorem Matrix-tree Theorem Applications





Sachs' Theorem Matrix-tree Theorem Applications

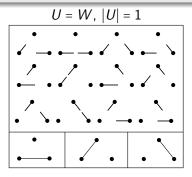
Hypergraphic Matrix-tree-type Theorems

Sachs' Theorem Matrix-tree Theorem Applications

Definitions

- $[M]_{(U;W)}$ is the minor obtained by striking out rows U and columns W from M.
- $\mathfrak{C}(U; W; G)$ is the set of all $c : \coprod_{u \in \overline{U}} \overrightarrow{P}_1 \to G$ with $p(t_u) = u$ and $(r(h_u) \mid u \in \overline{U}) = \overline{W}$

and $\{p(h_u) \mid u \in \overline{U}\} = \overline{W}$.



L.J. Rusnak Oriented Hypergraphs

Sachs' Theorem Matrix-tree Theorem Applications

Theorem (Robinson, R., Schmidt, Shroff, 2017)

Let G be an oriented hypergraph with adjacency matrix A_G and Laplacian matrix L_G , then

1
$$perm([L_G]_{(U;W)}) = \sum_{c \in \mathfrak{C}(U;W;G)} (-1)^{on(c)+nn(c)},$$

$$et([L_G]_{(U;W)}) = \sum_{c \in \mathfrak{C}(U;W;G)} \varepsilon(c) \cdot (-1)^{on(c)+nn(c)},$$

8
$$perm([A_G]_{(U;W)}) = \sum_{c \in \mathfrak{S}(U;W;G)} (-1)^{nn(c)},$$

$$4 \quad det([A_G]_{(U;W)}) = \sum_{c \in \mathfrak{S}(U;W;G)} \varepsilon(c) \cdot (-1)^{en(c)+nn(c)}$$

Where $\varepsilon(c)$ is the number of inversions in the natural bijection from \overline{U} to \overline{W} .

Sachs' Theorem Matrix-tree Theorem Applications

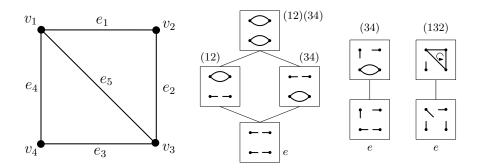
Applications

L.J. Rusnak Oriented Hypergraphs

Sachs' Theorem Matrix-tree Theorem Applications

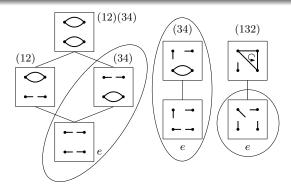
Theorem (Robinson, R., Schmidt, Shroff, 2017)

"Activation classes" of a bidirected graph are boolean.



Sachs' Theorem Matrix-tree Theorem Applications

- Two contributors c and d are *uw-equivalent* if $c(h_u) = d(h_u) = w$.
- The (u; w)-cut of activation class A is the subclass of A / \sim_{uw} where each element has $c(h_u) = w$.



Sachs' Theorem Matrix-tree Theorem Applications

Lemma (Robinson, R., Schmidt, Shroff, 2017)

If G is a signed graph, then

$$\det(L_G) = \sum_{c \in \mathfrak{M}^-} 2^{nc(c)}.$$

Where \mathfrak{M}^- is the set of maximal elements from the positive-circle-free activation classes.

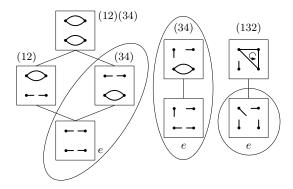
Corollary

If G is a balanced signed graph, then $det(L_G) = 0$.

Sachs' Theorem Matrix-tree Theorem Applications

Lemma (Robinson, R., Schmidt, Shroff, 2017)

If G is a bidirected graph, then the set of elements in all single-element $\widehat{A}_{\neq 0}(u; w; G')$ is activation equivalent to the set of spanning trees of G.



Sachs' Theorem Matrix-tree Theorem Applications

Theorem (Chen, Liu, Robinson, R., Wang, 2017)

Let G be an oriented hypergraph with no isolated vertices or 0-edges with Laplacian matrix L_G , then

- $\bullet |\mathfrak{C}(G)| < perm(L_G) \le |\mathfrak{C}(G)|, and perm(L_G) = |\mathfrak{C}(G)| if, and only if, G is extroverted or introverted,$
- **②** $-|\mathfrak{C}(G)| < det(L_G) \le |\mathfrak{C}(G)|$, and $det(L_G) = |\mathfrak{C}(G)|$ if, and only if, the connected components of *G* consist of bouquets of introverted or extroverted edges.

Theorem (Chen, Liu, Robinson, R., Wang, 2017)

If G is a balanced signed graph, then $perm(A_G)$ is maximal and equals $|\mathfrak{C}_{=0}(G)|$.

Categorical Insights

Insight into object comparisons and naturality

Categorical Insights

Definitions (Graph-like Categories)

- **1** Quivers: $\mathfrak{Q} \coloneqq (id_{Set} \downarrow \Delta^* \Delta)$
- **2** Incidence Structures: $\mathfrak{R} \coloneqq (id_{Set} \downarrow \Delta^*)$

3 Set Systems:
$$\mathfrak{H} := (id_{Set} \downarrow \mathcal{P})$$

Multigraphs: M is the coreflective subcategory of S with set size restricted to 2.

	R	Q	Ŋ	M
Limits	Yes	Yes	Yes	Yes
Colimits	Yes	Yes	Yes	Yes
Subobject classifier	Yes	Yes	Yes	Yes
Cartesian closed	Yes	Yes	No	No
Projective cover	Yes	Yes	No	Yes
Generation family size	3	2	class	2

Categorical Insights

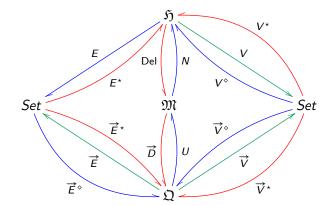
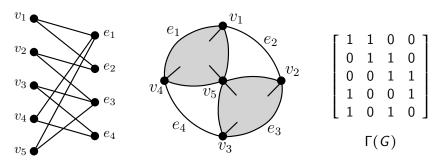


Figure: Full functorial diagram for \mathfrak{Q} , \mathfrak{M} , and \mathfrak{H}

Categorical Insights



 Ω_G

G

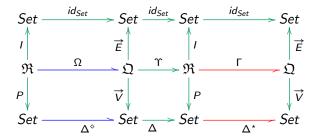


Figure: Natural functor diagram for \mathfrak{Q} & \mathfrak{R}

Categorical Insights

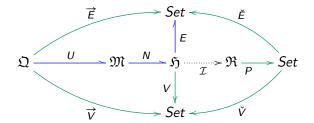


Figure: Functorial diagram for $\mathfrak{Q}, \mathfrak{M}, \mathfrak{H}, \& \mathfrak{R}$

- G. Chen, V. Liu, E. Robinson, L. J. Rusnak, and K. Wang. A characterization of oriented hypergraphic laplacian and adjacency matrix coefficients. *ArXiv. 1704.03599 [math.CO]*, 2017.
- E. Robinson, L. J. Rusnak, M. Schmidt, and P. Shroff. Oriented hypergraphic matrix-tree type theorems and bidirected minors via boolean ideals. *ArXiv. 1709.04011 [math.CO]*, 2017.
 - L.J. Rusnak.

Oriented hypergraphs: Introduction and balance. *Electronic J. Combinatorics*, 20(3)(#P48), 2013

Proof of $perm(L_G)$:

• Via weak walks:

$$\operatorname{perm}(L_G) = \sum_{\pi \in S_V} \prod_{v \in V} \sum_{\omega \in \Omega_{1,\pi}} -sgn(\omega(\overrightarrow{P}_1)),$$

where $\Omega_{1,\pi}$ is the set of all incidence preserving maps $\omega : \overrightarrow{P}_1 \to G$ with $\omega(t) = v$ and $\omega(h) = \pi(v)$.

Proof of $perm(L_G)$:

• Via weak walks:

$$\operatorname{perm}(L_G) = \sum_{\pi \in S_V} \prod_{v \in V} \sum_{\omega \in \Omega_{1,\pi}} -sgn(\omega(\vec{P}_1)),$$

where $\Omega_{1,\pi}$ is the set of all incidence preserving maps $\omega : \overrightarrow{P}_1 \to G$ with $\omega(t) = v$ and $\omega(h) = \pi(v)$.

 Distribute, but do not evaluate, the inner sums for all v ∈ V. Sum passes to incidence preserving maps c : ∐ P
₁ → G with ω(t_v) = v, ω(h_v) = π(v), and {ω(h_v) | v ∈ V} = V.

Proof of $perm(L_G)$:

• Via weak walks:

$$\operatorname{perm}(L_G) = \sum_{\pi \in S_V} \prod_{v \in V} \sum_{\omega \in \Omega_{1,\pi}} -sgn(\omega(\overrightarrow{P}_1)),$$

where $\Omega_{1,\pi}$ is the set of all incidence preserving maps $\omega : \overrightarrow{P}_1 \to G$ with $\omega(t) = v$ and $\omega(h) = \pi(v)$.

- Distribute, but do not evaluate, the inner sums for all v ∈ V. Sum passes to incidence preserving maps c: *U* → G with *ω*(t_v) = v, *ω*(h_v) = π(v), and {*ω*(h_v) | v ∈ V} = V.
- Collecting permutomorphic contributors gives:

$$\operatorname{perm}(\mathcal{L}_G) = \sum_{\pi \in \mathcal{S}_V} \sum_{c \in \mathfrak{C}_\pi(G)} \prod_{v \in V} \sigma(c(i_v)) \sigma(c((j_v))).$$

Proof of $perm(L_G)$ continued:

• Consider the product $\prod_{v \in V} \sigma(c(i_v)) \sigma(c((j_v)))$.

- Consider the product $\prod_{v \in V} \sigma(c(i_v)) \sigma(c((j_v)))$.
- Factor out -1 for each adjacency determined by *c*, producing a factor of $(-1)^{oc(c)}$.

- Consider the product $\prod_{v \in V} \sigma(c(i_v)) \sigma(c((j_v)))$.
- Factor out -1 for each adjacency determined by *c*, producing a factor of $(-1)^{oc(c)}$.
- This forces every negative/positive adjacency in ${\it G}$ appear as a value of $-1/{+1}$ in ${\it L}_{\it G}$.

- Consider the product $\prod_{v \in V} \sigma(c(i_v)) \sigma(c((j_v)))$.
- Factor out -1 for each adjacency determined by *c*, producing a factor of $(-1)^{oc(c)}$.
- This forces every negative/positive adjacency in G appear as a value of $-1/{\rm +1}$ in L_G .
- Factor out -1 from every adjacency that is negative in G, producing a factor of (-1)^{nc(c)} and a net factor of (-1)^{oc(c)+nc(c)}.

- Consider the product $\prod_{v \in V} \sigma(c(i_v)) \sigma(c((j_v)))$.
- Factor out -1 for each adjacency determined by *c*, producing a factor of $(-1)^{oc(c)}$.
- This forces every negative/positive adjacency in G appear as a value of $-1/{\rm +1}$ in L_G .
- Factor out -1 from every adjacency that is negative in G, producing a factor of (-1)^{nc(c)} and a net factor of (-1)^{oc(c)+nc(c)}.
- Thus,

$$\operatorname{perm}(L_G) = \sum_{\pi \in S_V} \sum_{c \in \mathfrak{C}_{\pi}(G)} (-1)^{oc(c) + nc(c)}$$

Proof of $perm(L_G)$ continued:

- Consider the product $\prod_{v \in V} \sigma(c(i_v)) \sigma(c((j_v)))$.
- Factor out -1 for each adjacency determined by *c*, producing a factor of $(-1)^{oc(c)}$.
- This forces every negative/positive adjacency in G appear as a value of $-1/{\rm +1}$ in L_G .
- Factor out -1 from every adjacency that is negative in G, producing a factor of (-1)^{nc(c)} and a net factor of (-1)^{oc(c)+nc(c)}.
- Thus,

$$\operatorname{perm}(L_G) = \sum_{\pi \in S_V} \sum_{c \in \mathfrak{C}_\pi(G)} (-1)^{oc(c) + nc(c)},$$

Combine to get

$$\operatorname{perm}(L_G) = \sum_{c \in \mathfrak{C}(G)} (-1)^{oc(c) + nc(c)}.$$