Oriented hypergraphic matrix-tree and Sachs type theorems

Lucas Rusnak

5th annual Mississippi Discrete Math Workshop

5 November 2017

[Overview of objects](#page-2-0) [Assiciated Matrices](#page-7-0) [Incidence Intricacies](#page-17-0)

Definitions

A graph is a collections of labeled 2-subsets of V .

• A set system is a collections of labeled subsets of $P(V)$.

- • A directed graph consists of disjoint sets V and E , and a pair of functions (σ, τ) from $E \rightarrow V$.
- An *incidence hypergraph* consists of disjoint sets V , E , and V and a function $\iota: I \to V \times E$.

- A directed graph consists of disjoint sets V and E , and a pair of functions (σ, τ) from $E \rightarrow V$.
- An *incidence hypergraph* consists of disjoint sets V , E , and V and a function $\iota: I \to V \times E$.

- A graph is a collections of labeled 2-subsets of V .
- A directed graph consists of disjoint sets V and E , and a pair of functions (σ, τ) from $E \rightarrow V$.
- A set system is a collections of labeled subsets of $P(V)$.
- An *incidence hypergraph* consists of disjoint sets V , E , and V and a function $\iota: I \to V \times E$.

- A signed graph is a graph with an edge signing function ψ : $E \to \{+1, -1\}$.
- An oriented hypergraph is an incidence hypergraph is an incidence signing function $\sigma : I \rightarrow \{+1,-1\}.$

- A signed graph is a graph with an edge signing function ψ : $E \to \{+1, -1\}$.
- An oriented hypergraph is an incidence hypergraph is an incidence signing function $\sigma : I \rightarrow \{+1,-1\}.$

[Background](#page-1-0)

[Sachs' Theorem and the Matrix-tree Theorem](#page-21-0) [Categorical Insights](#page-37-0) **[References](#page-43-0)** [Assiciated Matrices](#page-7-0) [Incidence Intricacies](#page-17-0)

Associated Matrices

- Incidence Matrix: $\mathrm{H}_{\mathcal{G}}$
- Degree Matrix: D_G
- Adjacency Matrix: A_G
- Laplacian Matrix: $L_G := D_G A_G = H_G H_G^T$

- Incidence Matrix: H_G
- Degree Matrix: D_G
- Adjacency Matrix: A_G
- Laplacian Matrix: $L_G := D_G A_G = H_G H_G^T$

- Incidence Matrix: H_G
- Degree Matrix: D_G
- Adjacency Matrix: A_G
- Laplacian Matrix: $L_G := D_G A_G = H_G H_G^T$

- Incidence Matrix: H_G
- Degree Matrix: D_G
- Adjacency Matrix: A_G
- Laplacian Matrix: $L_G := D_G A_G = H_G H_G^T$

[Background](#page-1-0)

[Sachs' Theorem and the Matrix-tree Theorem](#page-21-0) [Categorical Insights](#page-37-0) **[References](#page-43-0)**

[Assiciated Matrices](#page-7-0) [Graph Theorems](#page-12-0) [Incidence Intricacies](#page-17-0)

Graph Theorems

[Overview of objects](#page-1-0) [Graph Theorems](#page-12-0) [Incidence Intricacies](#page-17-0)

Theorem (Sachs' Theorem)

Let G be a graph, \mathscr{B}_i be the set of basic figures with exactly i isolated vertices, $tf(B)$ be the total number of elementary figures, and $cf(B)$ be the number of circuits in B.

$$
\chi(A_G, x) = \sum_{i=0}^{|V|} \Big(\sum_{B \in \mathscr{B}_i} (-1)^{tf(B)} (2)^{cf(B)} \Big) x^i.
$$

[Overview of objects](#page-1-0) [Assiciated Matrices](#page-7-0) [Graph Theorems](#page-12-0) [Incidence Intricacies](#page-17-0)

- An elementary figure is a circuit or a path of length 1.
- A basic figure is a disjoint union of elementary figures.

[Overview of objects](#page-1-0) [Graph Theorems](#page-12-0) [Incidence Intricacies](#page-17-0)

Theorem (Matrix-tree Theorem)

Let G be a graph, $T(G)$ be the number of spanning trees of G, and L_{ij} be the ij-minor of the Laplacian, then

 $det(L_{ij}) = (-1)^{i+j} \mathcal{T}(G).$

[Overview of objects](#page-1-0) [Assiciated Matrices](#page-7-0) [Graph Theorems](#page-12-0) [Incidence Intricacies](#page-17-0)

Theorem (Tutte's Transpedance Theorem)

The ordered second cofactors produce an edge labelling that satisfies Kirchhoff's Laws. Moreover, the initial energy is the in equal to the first cofactor.

[Background](#page-1-0)

[Sachs' Theorem and the Matrix-tree Theorem](#page-21-0) [Categorical Insights](#page-37-0) **[References](#page-43-0)**

[Assiciated Matrices](#page-7-0) [Graph Theorems](#page-12-0) [Incidence Intricacies](#page-17-0)

Incidence Intricacies

[Overview of objects](#page-1-0) [Incidence Intricacies](#page-17-0)

- A *k-weak walk* is an incidence preserving embedding of \overrightarrow{P}_k into G.
- A backstep is a non-incidence-monic weak walk of length 1.

[Background](#page-1-0)

[Sachs' Theorem and the Matrix-tree Theorem](#page-21-0) [Categorical Insights](#page-37-0) [References](#page-43-0) [Overview of objects](#page-1-0) [Assiciated Matrices](#page-7-0) [Incidence Intricacies](#page-17-0)

Theorem

Let G be an oriented hypergraph,

- \bigoplus H_G is the half-walk matrix,
- \bullet -D_G is the strictly 1-weak-walk matrix,
- \bigcirc A_G is the 1-weak-walk matrix,
- \bigcirc -L_G is the 1-weak walk matrix,
- \mathbf{S} A_{G}^{k} is the k-walk matrix,
- \mathbf{G} $(-1)^{k}L_{G}^{k}$ is the k-weak walk matrix,

[Sachs' Theorem](#page-21-0)

Hypergraphic Sachs-type Theorems

[Sachs' Theorem](#page-21-0)

- • A contributor of G is an incidence preserving map from a disjoint union of \overrightarrow{P}_1 's into G defined by $c: \coprod \overrightarrow{P}_1 \to G$ such v∈V that $c(t_v) = v$ and $\{c(h_v) | v \in V\} = V$.
- Let $\mathfrak{C}(G)$ denote the set of contributors.

[Sachs' Theorem](#page-21-0)

Definition

 $\mathfrak{C}_{=\mathsf{k}}(\mathsf{G})$ is the set of contributors of G with exactly k backsteps. $\widehat{\mathfrak{C}}_{=k}(G)$ removes k backsteps.

[Sachs' Theorem](#page-21-0)

Definition

 $\mathfrak{C}_{\geq k}(G)$ is the set of contributors of G with at least k backsteps. $\widehat{\mathfrak{C}}_{\geq k}(G)$ removes k backsteps.

[Sachs' Theorem](#page-21-0)

Theorem (Chen, Liu, Robinson, R., Wang, 2017)

Let G be an oriented hypergraph with adjacency matrix A_G and Laplacian matrix L_G , then

$$
\bullet \ \ perm(L_G) = \sum_{c \in \mathfrak{C}_{\geq 0}(G)} (-1)^{oc(c) + nc(c)},
$$

$$
\bullet \ \det(L_G) = \sum_{c \in \mathfrak{C}_{\geq 0}(G)} (-1)^{pc(c)},
$$

$$
\bullet \ \ perm(A_G) = \sum_{c \in \mathfrak{C}_{=0}(G)} (-1)^{nc(c)},
$$

$$
\bullet \ \det(A_G) = \sum_{c \in \mathfrak{C}_{=0}(G)} (-1)^{ec(c)+nc(c)}.
$$

[Sachs' Theorem](#page-21-0)

Theorem (Chen, Liu, Robinson, R., Wang, 2017)

Let G be an oriented hypergraph with adjacency matrix A_G and Laplacian matrix L_G , then

$$
\begin{split} &\bullet\ \chi^P(A_G,x)=\sum_{k=0}^{|V|}\left(\sum_{c\in\widehat{\mathfrak{C}}_{=k}(G)}(-1)^{oc(c)+nc(c)}\right)x^k,\\ &\bullet\ \chi^D(A_G,x)=\sum_{k=0}^{|V|}\left(\sum_{c\in\widehat{\mathfrak{C}}_{=k}(G)}(-1)^{pc(c)}\right)x^k,\\ &\bullet\ \chi^P(L_G,x)=\sum_{k=0}^{|V|}\left(\sum_{c\in\widehat{\mathfrak{C}}_{\ge k}(G)}(-1)^{nc(c)+bs(c)}\right)x^k,\\ &\bullet\ \chi^D(L_G,x)=\sum_{k=0}^{|V|}\left(\sum_{c\in\widehat{\mathfrak{C}}_{\ge k}(G)}(-1)^{ec(c)+nc(c)+bs(c)}\right)x^k. \end{split}
$$

[Sachs' Theorem](#page-21-0)

[Sachs' Theorem](#page-21-0) [Matrix-tree Theorem](#page-28-0)

Hypergraphic Matrix-tree-type Theorems

[Matrix-tree Theorem](#page-28-0)

- • $[M]_{(U;W)}$ is the minor obtained by striking out rows U and columns W from M.
- $\mathfrak{C}(U;W;G)$ is the set of all $c: \coprod \overrightarrow{P}_1 \to G$ with $p(t_u) = u$ $u∈\overline{U}$ and $\{p(h_u) \mid u \in \overline{U}\} = \overline{W}$.

[Matrix-tree Theorem](#page-28-0)

Theorem (Robinson, R., Schmidt, Shroff, 2017)

Let G be an oriented hypergraph with adjacency matrix A_G and Laplacian matrix L_G , then

$$
\text{Derm}([L_G]_{(U;W)}) = \sum_{c \in \mathfrak{C}(U;W;G)} (-1)^{on(c)+nn(c)},
$$

$$
\bullet \ \det([L_G]_{(U;W)}) = \sum_{c \in \mathfrak{C}(U;W;G)} \varepsilon(c) \cdot (-1)^{on(c)+nn(c)},
$$

$$
\bullet \ \ perm([A_G]_{(U;W)}) = \sum_{c \in \mathfrak{S}(U;W;G)} (-1)^{nn(c)},
$$

$$
\text{det}([A_G]_{(U;W)}) = \sum_{c \in \mathfrak{S}(U;W;G)} \varepsilon(c) \cdot (-1)^{en(c)+nn(c)}.
$$

Where $\varepsilon(c)$ is the number of inversions in the natural bijection from \overline{U} to \overline{W} .

[Applications](#page-31-0)

Applications

L.J. Rusnak [Oriented Hypergraphs](#page-0-0)

[Applications](#page-31-0)

Theorem (Robinson, R., Schmidt, Shroff, 2017)

"Activation classes" of a bidirected graph are boolean.

[Applications](#page-31-0)

- \bullet Two contributors c and d are uw-equivalent if $c(h_u) = d(h_u) = w$.
- The $(u; w)$ -cut of activation class A is the subclass of \mathcal{A}/\sim_{uw} where each element has $c(h_u) = w$.

[Applications](#page-31-0)

Lemma (Robinson, R., Schmidt, Shroff, 2017)

If G is a signed graph, then

$$
\det(L_G) = \sum_{c \in \mathfrak{M}^-} 2^{nc(c)}.
$$

Where M− is the set of maximal elements from the positive-circle-free activation classes.

Corollary

If G is a balanced signed graph, then det(L_G) = 0.

[Applications](#page-31-0)

Lemma (Robinson, R., Schmidt, Shroff, 2017)

If G is a bidirected graph, then the set of elements in all single-element $\widehat{\mathcal{A}}_{\neq 0}(u;w;G')$ is activation equivalent to the set of spanning trees of G.

[Applications](#page-31-0)

Theorem (Chen, Liu, Robinson, R., Wang, 2017)

Let G be an oriented hypergraph with no isolated vertices or 0-edges with Laplacian matrix L_G , then

- \bigcirc - $|\mathfrak{C}(G)|$ < perm $(L_G) \leq |\mathfrak{C}(G)|$, and perm $(L_G) = |\mathfrak{C}(G)|$ if, and only if, G is extroverted or introverted,
- $\bigotimes -|\mathfrak{C}(G)| < \det(L_G) \leq |\mathfrak{C}(G)|$, and $\det(L_G) = |\mathfrak{C}(G)|$ if, and only if, the connected components of G consist of bouquets of introverted or extroverted edges.

Theorem (Chen, Liu, Robinson, R., Wang, 2017)

If G is a balanced signed graph, then perm (A_G) is maximal and equals $|\mathfrak{C}_{=0}(G)|$.

[Categorical Insights](#page-37-0)

Insight into object comparisons and naturality

[Background](#page-1-0)
ree Theorem Sachs' Theorem and the Matrix-tree [Categorical Insights](#page-37-0) [References](#page-43-0)

[Categorical Insights](#page-37-0)

Definitions (Graph-like Categories)

- \bigodot Quivers: \mathfrak{Q} := (id_{Set} \downarrow Δ^{*}Δ)
- **@** Incidence Structures: $\mathfrak{R} \coloneqq (id_{Set} \downarrow \Delta^{\star})$

6 Set Systems:
$$
\mathfrak{H} \coloneqq (id_{Set} \downarrow \mathcal{P})
$$

4 Multigraphs: M is the coreflective subcategory of $\tilde{\eta}$ with set size restricted to 2.

[Categorical Insights](#page-37-0)

Figure: Full functorial diagram for $\mathfrak{Q}, \mathfrak{M}$, and \mathfrak{H}

[Categorical Insights](#page-37-0)

 Ω_G

G

[Categorical Insights](#page-37-0)

Figure: Natural functor diagram for Ω & \Re

[Categorical Insights](#page-37-0)

Figure: Functorial diagram for $\mathfrak{Q}, \mathfrak{M}, \mathfrak{H}, \& \mathfrak{R}$

- 51 G. Chen, V. Liu, E. Robinson, L. J. Rusnak, and K. Wang. A characterization of oriented hypergraphic laplacian and adjacency matrix coefficients. ArXiv. 1704.03599 [math.CO], 2017.
- **E.** E. Robinson, L. J. Rusnak, M. Schmidt, and P. Shroff. Oriented hypergraphic matrix-tree type theorems and bidirected minors via boolean ideals. ArXiv. 1709.04011 [math.CO], 2017.
- 6 L.J. Rusnak.

Oriented hypergraphs: Introduction and balance. Electronic J. Combinatorics, 20(3)(#P48), 2013

Proof of $perm(L_G)$:

Via weak walks:

$$
{\rm perm}\big(L_G\big)=\sum_{\pi\in S_V}\prod_{v\in V}\sum_{\omega\in \Omega_{1,\pi}}-sgn\big(\omega\big(\overrightarrow{P}_1\big)\big),
$$

where $\Omega_{1,\pi}$ is the set of all incidence preserving maps $\omega : \overrightarrow{P}_1 \to G$ with $\omega(t) = v$ and $\omega(h) = \pi(v)$.

[Background](#page-1-0)
ree Theorem Sachs' Theorem and the Matrix-tree [Categorical Insights](#page-37-0) [References](#page-43-0)

Proof of *perm* (L_G) :

Via weak walks:

$$
{\rm perm}\big(L_G\big)=\sum_{\pi\in S_V}\prod_{v\in V}\sum_{\omega\in \Omega_{1,\pi}}-sgn\big(\omega\big(\overrightarrow{P}_1\big)\big),
$$

where $\Omega_{1,\pi}$ is the set of all incidence preserving maps $\omega : \overrightarrow{P}_1 \to G$ with $\omega(t) = v$ and $\omega(h) = \pi(v)$.

Distribute, but do not evaluate, the inner sums for all $v \in V$. Sum passes to incidence preserving maps $c : \coprod_{i} \overrightarrow{P}_1 \rightarrow G$ with v∈V
∩ $\omega(t_v)$ = v, $\omega(h_v)$ = $\pi(v)$, and $\{\omega(h_v) | v \in V\}$ = V.

[Background](#page-1-0)
ree_Theorem Sachs' Theorem and the Matrix-tree [Categorical Insights](#page-37-0) [References](#page-43-0)

Proof of *perm* (L_G) :

Via weak walks:

$$
{\rm perm}\big(L_G\big)=\sum_{\pi\in S_V}\prod_{v\in V}\sum_{\omega\in \Omega_{1,\pi}}-sgn\big(\omega\big(\overrightarrow{P}_1\big)\big),
$$

where $\Omega_{1,\pi}$ is the set of all incidence preserving maps $\omega : \overrightarrow{P}_1 \to G$ with $\omega(t) = v$ and $\omega(h) = \pi(v)$.

- Distribute, but do not evaluate, the inner sums for all $v \in V$. Sum passes to incidence preserving maps $c : \coprod_{i} \overrightarrow{P}_1 \rightarrow G$ with v∈V
∩ $\omega(t_v)$ = v, $\omega(h_v)$ = $\pi(v)$, and $\{\omega(h_v) | v \in V\}$ = V.
- Collecting permutomorphic contributors gives:

$$
\mathrm{perm}\big(L_G\big)=\sum_{\pi\in S_V}\sum_{c\in\mathfrak{C}_\pi(G)}\prod_{v\in V}\sigma\big(c(i_v)\big)\sigma\big(c(\big(j_v\big)).
$$

Proof of $perm(L_G)$ continued:

• Consider the product ∏ v∈V $\sigma(c(i_v))\sigma(c(j_v)).$

- Consider the product ∏ $\sigma(c(i_v))\sigma(c(j_v)).$
- v∈V ■ Factor out -1 for each adjacency determined by c , producing a factor of $(-1)^{oc(c)}$.

- Consider the product $\prod_{v} \sigma(c(i_v))\sigma(c((j_v))$. v∈V
- Factor out -1 for each adjacency determined by c , producing a factor of $(-1)^{oc(c)}$.
- \bullet This forces every negative/positive adjacency in G appear as a value of $-1/+1$ in L_G .

- Consider the product $\prod_{v} \sigma(c(i_v))\sigma(c((j_v))$.
- $\begin{array}{lll} & \downarrow_{\mathfrak{c}} \mathfrak{c} \mathfrak{v} \ \bullet & \mathfrak{F} \ \bullet & \mathfrak{F} \ \bullet & \mathfrak{F} \end{array}$ Factor out -1 for each adjacency determined by c , producing a factor of $(-1)^{oc(c)}$.
- \bullet This forces every negative/positive adjacency in G appear as a value of $-1/+1$ in L_G .
- Factor out -1 from every adjacency that is negative in G , producing a factor of $(-1)^{nc(c)}$ and a net factor of $(-1)^{oc(c)+nc(c)}$.

- Consider the product $\prod_{v} \sigma(c(i_v))\sigma(c((j_v))$.
- $\begin{array}{lll} & \downarrow_{\mathfrak{c}} \mathfrak{c} \mathfrak{v} \ \bullet & \mathfrak{F} \ \bullet & \mathfrak{F} \ \bullet & \mathfrak{F} \end{array}$ Factor out -1 for each adjacency determined by c , producing a factor of $(-1)^{oc(c)}$.
- \bullet This forces every negative/positive adjacency in G appear as a value of $-1/+1$ in L_G .
- Factor out -1 from every adjacency that is negative in G , producing a factor of $(-1)^{nc(c)}$ and a net factor of $(-1)^{oc(c)+nc(c)}$.
- \bullet Thus,

$$
\mathrm{perm}\big(L_G\big)=\sum_{\pi\in S_V}\sum_{c\in\mathfrak{C}_\pi(G)}(-1)^{oc(c)+nc(c)},
$$

Proof of $perm(L_G)$ continued:

- Consider the product $\prod_{v} \sigma(c(i_v))\sigma(c((j_v))$.
- $\begin{array}{lll} & \downarrow_{\mathfrak{c}} \mathfrak{c} \mathfrak{v} \ \bullet & \mathfrak{F} \ \bullet & \mathfrak{F} \ \bullet & \mathfrak{F} \end{array}$ Factor out -1 for each adjacency determined by c , producing a factor of $(-1)^{oc(c)}$.
- \bullet This forces every negative/positive adjacency in G appear as a value of $-1/+1$ in L_G .
- Factor out -1 from every adjacency that is negative in G , producing a factor of $(-1)^{nc(c)}$ and a net factor of $(-1)^{oc(c)+nc(c)}$.
- \bullet Thus,

$$
\mathrm{perm}\big(L_G\big)=\sum_{\pi\in S_V}\sum_{c\in \mathfrak{C}_\pi(G)}(-1)^{oc(c)+nc(c)},
$$

• Combine to get

$$
\mathrm{perm}\big(L_G\big)=\sum_{c\in \mathfrak{C}(G)} (-1)^{oc(c)+nc(c)}.
$$