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Definitions

� A graph is a collections of labeled 2-subsets of V .

� A directed graph consists of disjoint sets V and E , and a pair
of functions (σ, τ) from E → V .

� A set system is a collections of labeled subsets of P(V ).

� An incidence hypergraph consists of disjoint sets V , E , and I
and a function ι ∶ I → V × E .
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� Incidence Matrix: HG

� Degree Matrix: DG

� Adjacency Matrix: AG

� Laplacian Matrix: LG ∶= DG −AG = HGH
T
G
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Theorem (Sachs’ Theorem)

Let G be a graph, Bi be the set of basic figures with exactly i
isolated vertices, tf (B) be the total number of elementary figures,
and cf (B) be the number of circuits in B.

χ(AG , x) =
∣V ∣
∑
i=0

( ∑
B∈Bi

(−1)tf (B)(2)cf (B))x i .
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Definitions

� An elementary figure is a circuit or a path of length 1.

� A basic figure is a disjoint union of elementary figures.
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Theorem (Matrix-tree Theorem)

Let G be a graph, T (G) be the number of spanning trees of G,
and Lij be the ij-minor of the Laplacian, then

det(Lij) = (−1)i+jT (G).

LG =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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Theorem (Tutte’s Transpedance Theorem)

The ordered second cofactors produce an edge labelling that
satisfies Kirchhoff’s Laws. Moreover, the initial energy is the in
equal to the first cofactor.
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Definitions

� A k-weak walk is an incidence preserving embedding of
Ð→
P k

into G .

� A backstep is a non-incidence-monic weak walk of length 1.
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Theorem

Let G be an oriented hypergraph,

1 HG is the half-walk matrix,

2 −DG is the strictly 1-weak-walk matrix,

3 AG is the 1-���weak-walk matrix,

4 −LG is the 1-weak walk matrix,

5 Ak
G is the k-walk matrix,

6 (−1)kLkG is the k-weak walk matrix,
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Definitions

� A contributor of G is an incidence preserving map from a

disjoint union of
Ð→
P 1’s into G defined by c ∶ ∐

v∈V

Ð→
P 1 → G such

that c(tv) = v and {c(hv) ∣ v ∈ V } = V .

� Let C(G) denote the set of contributors.

2
2

(132)

(12)
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Definition

C=k(G) is the set of contributors of G with exactly k backsteps.
Ĉ=k(G) removes k backsteps.
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Definition

C≥k(G) is the set of contributors of G with at least k backsteps.
Ĉ≥k(G) removes k backsteps.
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Theorem (Chen, Liu, Robinson, R., Wang, 2017)

Let G be an oriented hypergraph with adjacency matrix AG and
Laplacian matrix LG , then

1 perm(LG) = ∑
c∈C≥0(G)

(−1)oc(c)+nc(c),

2 det(LG) = ∑
c∈C≥0(G)

(−1)pc(c),

3 perm(AG) = ∑
c∈C=0(G)

(−1)nc(c),

4 det(AG) = ∑
c∈C=0(G)

(−1)ec(c)+nc(c).

L.J. Rusnak Oriented Hypergraphs



Background
Sachs’ Theorem and the Matrix-tree Theorem

Categorical Insights
References

Sachs’ Theorem
Matrix-tree Theorem
Applications

Theorem (Chen, Liu, Robinson, R., Wang, 2017)

Let G be an oriented hypergraph with adjacency matrix AG and
Laplacian matrix LG , then

1 χP(AG , x) =
∣V ∣
∑
k=0

⎛
⎝ ∑
c∈Ĉ=k(G)

(−1)oc(c)+nc(c)
⎞
⎠
xk ,

2 χD(AG , x) =
∣V ∣
∑
k=0

⎛
⎝ ∑
c∈Ĉ=k(G)

(−1)pc(c)
⎞
⎠
xk ,

3 χP(LG , x) =
∣V ∣
∑
k=0

⎛
⎝ ∑
c∈Ĉ≥k(G)

(−1)nc(c)+bs(c)
⎞
⎠
xk ,

4 χD(LG , x) =
∣V ∣
∑
k=0

⎛
⎝ ∑
c∈Ĉ≥k(G)

(−1)ec(c)+nc(c)+bs(c)
⎞
⎠
xk .
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Ĉ≥1(G)

χD(LG , x) = x3−6x2+9x−4

Ĉ=1(G)

χD(AG , x) = x3 − 3x + 2
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Definitions

� [M](U;W ) is the minor obtained by striking out rows U and
columns W from M.

� C(U;W ;G) is the set of all c ∶ ∐
u∈U

Ð→
P 1 → G with p(tu) = u

and {p(hu) ∣ u ∈ U} =W .

U =W , ∣U ∣ = 1
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Theorem (Robinson, R., Schmidt, Shroff, 2017)

Let G be an oriented hypergraph with adjacency matrix AG and
Laplacian matrix LG , then

1 perm([LG ](U;W )) = ∑
c∈C(U;W ;G)

(−1)on(c)+nn(c),

2 det([LG ](U;W )) = ∑
c∈C(U;W ;G)

ε(c) ⋅ (−1)on(c)+nn(c),

3 perm([AG ](U;W )) = ∑
c∈S(U;W ;G)

(−1)nn(c),

4 det([AG ](U;W )) = ∑
c∈S(U;W ;G)

ε(c) ⋅ (−1)en(c)+nn(c).

Where ε(c) is the number of inversions in the natural bijection
from U to W .
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Theorem (Robinson, R., Schmidt, Shroff, 2017)

“Activation classes” of a bidirected graph are boolean.
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Definitions

� Two contributors c and d are uw-equivalent if
c(hu) = d(hu) = w .

� The (u;w)-cut of activation class A is the subclass of A/ ∼uw
where each element has c(hu) = w .
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Lemma (Robinson, R., Schmidt, Shroff, 2017)

If G is a signed graph, then

det(LG) = ∑
c∈M−

2nc(c).

Where M− is the set of maximal elements from the
positive-circle-free activation classes.

Corollary

If G is a balanced signed graph, then det(LG) = 0.
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Lemma (Robinson, R., Schmidt, Shroff, 2017)

If G is a bidirected graph, then the set of elements in all
single-element Â≠0(u;w ;G ′) is activation equivalent to the set of
spanning trees of G.
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Theorem (Chen, Liu, Robinson, R., Wang, 2017)

Let G be an oriented hypergraph with no isolated vertices or
0-edges with Laplacian matrix LG , then

1 − ∣C(G)∣ < perm(LG) ≤ ∣C(G)∣, and perm(LG) = ∣C(G)∣ if, and
only if, G is extroverted or introverted,

2 − ∣C(G)∣ < det(LG) ≤ ∣C(G)∣, and det(LG) = ∣C(G)∣ if, and
only if, the connected components of G consist of bouquets of
introverted or extroverted edges.

Theorem (Chen, Liu, Robinson, R., Wang, 2017)

If G is a balanced signed graph, then perm(AG) is maximal and
equals ∣C=0(G)∣.
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Definitions (Graph-like Categories)

1 Quivers: Q ∶= (idSet ↓∆⋆∆)
2 Incidence Structures: R ∶= (idSet ↓∆⋆)
3 Set Systems: H ∶= (idSet ↓ P)
4 Multigraphs: M is the coreflective subcategory of H with set

size restricted to 2.

R Q H M

Limits Yes Yes Yes Yes

Colimits Yes Yes Yes Yes

Subobject classifier Yes Yes Yes Yes

Cartesian closed Yes Yes No No

Projective cover Yes Yes No Yes

Generation family size 3 2 class 2

L.J. Rusnak Oriented Hypergraphs
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Figure: Full functorial diagram for Q, M, and H
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1
1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Γ(G)
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Set
idSet // Set

idSet // Set
idSet // Set

R
Ω /

I

OO

P
��

Q
Υ //

Ð→
E

OO

Ð→
V
��

R
Γ /

I

OO

P
��

Q

Ð→
E

OO

Ð→
V
��

Set
∆◇

/ Set
∆

// Set
∆⋆

/ Set

Figure: Natural functor diagram for Q & R
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Set

Q
U /

Ð→
E

//

Ð→
V

//

M
N / H
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V
��

R
P

// Set

Ě
nn

V̌ppSet

Figure: Functorial diagram for Q, M, H, & R

L.J. Rusnak Oriented Hypergraphs



Background
Sachs’ Theorem and the Matrix-tree Theorem

Categorical Insights
References

G. Chen, V. Liu, E. Robinson, L. J. Rusnak, and K. Wang.
A characterization of oriented hypergraphic laplacian and
adjacency matrix coefficients.
ArXiv. 1704.03599 [math.CO], 2017.

E. Robinson, L. J. Rusnak, M. Schmidt, and P. Shroff.
Oriented hypergraphic matrix-tree type theorems and
bidirected minors via boolean ideals.
ArXiv. 1709.04011 [math.CO], 2017.

L.J. Rusnak.
Oriented hypergraphs: Introduction and balance.
Electronic J. Combinatorics, 20(3)(#P48), 2013

L.J. Rusnak Oriented Hypergraphs



Background
Sachs’ Theorem and the Matrix-tree Theorem

Categorical Insights
References

Proof of perm(LG):

� Via weak walks:

perm(LG) = ∑
π∈SV

∏
v∈V

∑
ω∈Ω1,π

−sgn(ω(Ð→P 1)),

where Ω1,π is the set of all incidence preserving maps

ω ∶ Ð→P 1 → G with ω(t) = v and ω(h) = π(v).

� Distribute, but do not evaluate, the inner sums for all v ∈ V .

Sum passes to incidence preserving maps c ∶ ∐
v∈V

Ð→
P 1 → G with

ω(tv) = v , ω(hv) = π(v), and {ω(hv) ∣ v ∈ V } = V .

� Collecting permutomorphic contributors gives:

perm(LG) = ∑
π∈SV

∑
c∈Cπ(G)

∏
v∈V

σ(c(iv))σ(c((jv)).
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P 1 → G with

ω(tv) = v , ω(hv) = π(v), and {ω(hv) ∣ v ∈ V } = V .

� Collecting permutomorphic contributors gives:

perm(LG) = ∑
π∈SV

∑
c∈Cπ(G)

∏
v∈V

σ(c(iv))σ(c((jv)).
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Proof of perm(LG) continued:

� Consider the product ∏
v∈V

σ(c(iv))σ(c((jv)).

� Factor out −1 for each adjacency determined by c , producing
a factor of (−1)oc(c).

� This forces every negative/positive adjacency in G appear as a
value of −1/+1 in LG .

� Factor out −1 from every adjacency that is negative in G ,
producing a factor of (−1)nc(c) and a net factor of
(−1)oc(c)+nc(c).

� Thus,
perm(LG) = ∑

π∈SV
∑

c∈Cπ(G)
(−1)oc(c)+nc(c),

� Combine to get

perm(LG) = ∑
c∈C(G)

(−1)oc(c)+nc(c).
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