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Fixed Point Properties

Definition.
A structure

has the fixed point property iff every
structure-preserving map

f has a fixed point x = f (x).
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Fixed Point Properties
Definition.

A topological space
has the fixed point property iff every

continuous function from the space to itself
f has a fixed point x = f (x).

Example. The unit ball in Rd has the fixed point property.
(Brouwer’s Fixed Point Theorem.)
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Fixed Point Properties
Definition.

An ordered set
has the fixed point property iff every

order-preserving self map
f has a fixed point x = f (x).
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has the fixed point property.
(This is a separate talk ... as is the connection to analysis.)
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Fixed Point Properties
Definition.

A graph
has the fixed vertex property iff every
homomorphism from the graph to itself (every endomorphism)

f has a fixed point x = f (x).

Examples.
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A graph G = (V,E) consists of a set V of points, which are
called vertices, and a set E of two-element subsets of E, called
edges.

The standard visualization is what we had on the
previous panel: Points are drawn in the plane and an edge
{v,w} is indicated by a line or an arc from (the point
corresponding to) v to (the point corresponding to) w.

Definition. (See, for example, P. Hell and J. Nešetril (2004),
Graphs and homomorphisms, Oxford University Press (Oxford
Lecture Series in Mathematics and its Applications 28),
Oxford.) Let G = (V,E) and H = (W,F) be graphs. A function
f : V→W is called a homomorphism iff, for all v,w ∈ V, if
{v,w} ∈ E, then {f (v), f (w)} ∈ F. An endomorphism is a
homomorphism from G to G, an isomorphism is a bijective
homomorphism whose inverse is a homomorphism, too, and an
automorphism is an isomorphism from G to G.
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Graphs and homomorphisms, Oxford University Press (Oxford
Lecture Series in Mathematics and its Applications 28),
Oxford.) Let G = (V,E) and H = (W,F) be graphs. A function
f : V→W is called a homomorphism iff, for all v,w ∈ V, if
{v,w} ∈ E, then {f (v), f (w)} ∈ F. An endomorphism is a
homomorphism from G to G, an isomorphism is a bijective
homomorphism whose inverse is a homomorphism, too, and an
automorphism is an isomorphism from G to G.

Bernd.Schroeder@usm.edu Department of Mathematics, The University of Southern Mississippi

The Fixed Vertex Property, Products and Binary Constraint Satisfaction



The Fixed Vertex Property Graph Homomorphisms Ordered Sets Products Constraint Networks Open Questions

A graph G = (V,E) consists of a set V of points, which are
called vertices, and a set E of two-element subsets of E, called
edges. The standard visualization is what we had on the
previous panel: Points are drawn in the plane and an edge
{v,w} is indicated by a line or an arc from (the point
corresponding to) v to (the point corresponding to) w.

Definition. (See, for example, P. Hell and J. Nešetril (2004),
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To Loop or not to Loop ... There is no Question

If G = (V,E) has a vertex b with a loop at b, that is, an edge
{b}, and another edge {b,c}, then the function that maps
V \{b} to b and b to c is an endomorphism that does not fix a
single vertex.

(So that’s also why we defined all edges as two-element
subsets.)
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Without Loops, Homomorphisms do not Collapse
Edges

Observation. Let G = (V,E) and H = (W,F) be graphs (from
now on automatically assumed to be without loops) and let
f : V→W be a homomorphism. If v∼ w, then f (v) 6= f (w).

This means that graph colorings are homomorphisms into
complete graphs, which is why the term “generalized coloring”
is sometimes associated with the study of graph
homomorphisms.
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Speaking of Coloring

Definition. Let G = (V,E) be a graph. A function
c : V→{1, . . . ,n} such that v∼ w implies f (v) 6= f (w) is called
an n-coloring of G.

Definition. Let G = (V,E) be a graph. The smallest n such that
there is an n-coloring of G is the chromatic number χ(G).

Proposition. Let G = (V,E) and H = (W,F) be graphs and let
f : V→W be a homomorphism. Then χ(G)≤ χ(H[f [V]]).
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For the graphs above, the dominating vertex is the only vertex
whose neighborhood has chromatic number 3 (left) or 4 (right).
The chromatic numbers of the neighborhoods of all other
vertices are smaller. Thus the dominating vertices must be
mapped to themselves by any endomorphisms.

A dominating vertex does not guarantee the fixed vertex
property: Attaching a dominating vertex to the two graphs
above produces graphs without the fixed vertex property.
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Fixed Point Property for Ordered Sets

The whole fixed point theory for ordered sets can be embedded
into the theory for the fixed vertex property. “Simply” replace
every directed edge in the ordered set (including loops) with
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A Semi-Solved Problem

The product of any two finite ordered sets with the fixed point
property has the fixed point property, too. (Roddy, 1994)

What about infinite ordered sets?

Certain tools for finite ordered sets are not available for general
infinite ordered sets. They are also not available for the fixed
vertex property for graphs. So, with the fixed point property
(including products of ordered sets with the fixed point
property) embedding into the fixed vertex property, maybe an
analysis of the fixed vertex property for products of graphs
could provide new insights?
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Does the Product of Two Graphs with the Fixed
Vertex Property have the Fixed Vertex Property?

Which product? There are at least 4 products for graphs.

One of them corresponds to the one for ordered sets (with the
embedding from the previous panel) and maybe the other ones
are interesting, too.
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Definition.

The direct product or categorical product or
tensor product of G and H is the graph G×H whose vertices
are the set V×W and for which there is an edge between (x,u)
and (y,v) iff {x,y} ∈ E and {u,v} ∈ F.

This is the product that acts like the product for ordered sets on
the mentioned embeddings (technical proof).

The shock (for me). The direct product of the two graphs
below does not have the fixed vertex property.
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How Do We Know?

Definition. A binary constraint network consists of the
following.

1. A set of variables x1, · · · ,xr, (take the vertices of the graph)
2. A set of domains D1, · · · ,Dr, one for each variable, (make

Di := V \{xi})
3. A set C of unary and binary constraints.

I Each unary constraint consists of a variable xi and a set
Ci ⊆ Di (already incorporated in the choice of the Di),

I Each binary constraint consists of a set of two variables
{xi,xj} and a binary relation Cij ⊆ Di×Dj (xi 6∼ xj: no
constraint; xi ∼ xj: Cij = {(fi, fj) ∈ Di×Dj : fi ∼ fj}),

I For each set of variables, we have at most one constraint.
A solution is a set of instantiations {(x1, f1), . . . ,(xr, fr)} such
that any subset {(xj, fj),(xk, fk)} is such that (fj, fk) ∈ Cjk.
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(My) Implementation

Expanded Binary Constraint Network. (Interpret as a graph.)
I Store all allowed instantiations (xj, fj) as vertices.

(All pairs (xj, fj) with xj 6= fj.)
I The pair {(xj, fj),(xk, fk)} is an edge iff the assignment of fj

to xj and of fi to xi is allowed (“consistent”). (This is all
pairs {(xj, fj),(xk, fk)} with xj 6= fj, xk 6= fk, and such that
xi ∼ xj⇒ fi ∼ fj.)

I Solutions correspond to r-cliques.
Enforcing (Path) Consistency
I Remove any remaining {(xj, fj),(xk, fk)} such that there is

an xi 6∈ {xj,xk} for which there is no triangle of the form
{(xj, fj),(xk, fk),(xi,y)} until this is no longer possible.

I There are many more consistency enforcing mechanisms.
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(My) Implementation

Search
I Extend any clique {(x1, f1), . . . ,(xk, fk)} of mutually

consistent instantiations until there is an i > k such that
there is no clique of the form {(x1, f1), . . . ,(xk, fk),(xi,y)}.
(Forward checking.)

I There are many more search algorithms.
(This is another separate talk.)

Once the front end for direct products was written, the
algorithm worked embarrassingly fast ... even faster if we
enforce (2,2)-consistency, that is, delete all edges
{(xj, fj),(xk, fk)} of the network such that there are 2 more
variables xi,x` 6∈ {xj,xk} such that the edge is not part of a
4-clique {(xj, fj),(xk, fk),(xi,y),(x`,v)}.
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Back to Products

Definition. Let G = (V,E) and H = (W,F) be two graphs. The
lexicographic product G•H of G and H is the graph obtained
from |V| isomorphic copies Hv (v ∈ V) of H such that, if v∼ w,
then all vertices in Hv are adjacent to all vertices in Hw, and, if
v 6∼ w, then no vertex in Hv is adjacent to any vertex in Hw.

Lexicographic products of graphs with the fixed vertex property
should have the fixed vertex property ... but for lexicographic
sums, this does not hold.
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Back to Products

Definition. Let G = (V,E) and H = (W,F) be two graphs. The
strong product of G and H is the graph G�H whose vertices
are the set V×W and for which there is an edge between (x,u)
and (y,v) iff ({x,y} ∈ E or x = y) and ({u,v} ∈ F or u = v).

I have little intuition beyond the fact that an endomorphism of
the form f (x,y) = (g(x),h(y)) must have a fixed point and that
many endomorphisms must be of this form. (See below for
cartesian products.)

I think the strong product operation also corresponds to the
product operations for the embeddings of ordered sets. (Should
be a similar proof as for the direct product, but more technical.)
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Back to Products

Definition. Let G = (V,E) and H = (W,F) be two graphs. The
cartesian product of G and H is the graph G�H whose
vertices are the set V×W and for which there is an edge
between (x,u) and (y,v) iff {x,y} ∈ E and u = v or x = y and
{u,v} ∈ F.

Lemma. Any triangle (x1,y1)∼ (x2,y2)∼ (x3,y3)∼ (x1,y1) in
G�H satisfies either x1 = x2 = x3 or y1 = y2 = y3. Therefore, if
G and H have the fixed vertex property and any two vertices of
G are connected by a path such that every edge is contained in
a triangle, then G�H has the fixed vertex property.
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... so far, there also is no counterexample here
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... and it naturally brings up the following question: What kinds
of graphs have the fixed vertex property and no triangles?
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A Universal Tool for Fixed Points

Definition. Let P be a
structure.

Then
a structure-preserving map

r : P→ P is called a retraction iff r2 = r (that is, iff r is
idempotent). We will say that R⊆ P is a retract of P iff there is
a retraction r : P→ P with r[P] = R.

Theorem. Let P be
a structure with the fixed point property

and let r : P→ P be a retraction. Then r[P] has the fixed point
property.
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Theorem. Let P be
a structure with the fixed point property

and let r : P→ P be a retraction. Then r[P] has the fixed point
property.

Proof. Let f : r[P]→ r[P] be
structure-preserving.

Then f ◦ r : P→ P is
structure-preserving,

too, and hence it has a fixed point x = f (r(x)). But then
x ∈ f [r[P]]⊆ r[P] and hence x = r(x), which means that
x = f (r(x)) = f (x) is a fixed point of f .
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Definition. Let G be a

graph.
Then
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r : V→ V is called a retraction iff r2 = r (that is, iff r is
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Searching for Graphs without Triangles and with
the Fixed Vertex Property

1. Outerplanar graphs retract onto their shortest odd cycle.
2. Cycles with 2 chords do not have the fixed vertex property.
3. Cycles with at most 2 chords crossing in an “outerplanar

drawing do not have the fixed vertex property.
4. Cycles with ≥ 3 chords can have the fixed vertex property.
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