When Cayley graphs are wreath products.

6th Annual Mississippi Discrete Mathematics Workshop

Rachel V. Barber
November 102018

Mississippi State University
Department of Mathematics and Statistics

Cayley Graphs

Definition

Let G be a group and $S \subset G$ such that $1 \notin S$ and $S=S^{-1}$. Define a
Cayley digraph of G, denoted $\operatorname{Cay}(G, S)$, to be the graph with vertex set

$$
V(\operatorname{Cay}(G, S))=G
$$

and edge set

$$
E(\operatorname{Cay}(G, S))=\{(g, g s): g \in G, s \in S\}
$$

We call S the connection set of $\operatorname{Cay}(G, S)$.

Cayley Graphs

Definition
Let G be a group and $S \subset G$ such that $1 \notin S$ and $S=S^{-1}$. Define a
Cayley digraph of G, denoted $\operatorname{Cay}(G, S)$, to be the graph with vertex set

$$
V(\operatorname{Cay}(G, S))=G
$$

and edge set

$$
E(\operatorname{Cay}(G, S))=\{(g, g s): g \in G, s \in S\}
$$

We call S the connection set of $\operatorname{Cay}(G, S)$.
So, the vertices of a Cayley graph are the elements of the group (and we label the vertices using the group elements), and the edge set is determined by the connection set S.

The Cayley graph Cay $\left(\mathbb{Z}_{10},\{1,3,7,9\}\right)$

The Cayley graph Cay $\left(\mathbb{Z}_{10},\{1,3,7,9\}\right)$

The Cayley graph Cay $\left(\mathbb{Z}_{10},\{1,3,7,9\}\right)$

The Cayley graph $\operatorname{Cay}\left(\mathbb{Z}_{10},\{1,3,7,9\}\right)$

Coset Digraph

Another type of graph constructed from groups is a graph called a coset digraph.

Coset Digraph

Another type of graph constructed from groups is a graph called a coset digraph.

Definition
Let G be a group, $H \leq G$ and $S \subseteq G$. Define a coset digraph, denoted $\operatorname{Cos}(G, H, S)$ with vertex set

$$
V(\operatorname{Cos}(G, H, S))=\{g H: g \in G\} \text {, the set of left cosets of } H \text { in } G,
$$

and arc set

$$
A(\operatorname{Cos}(G, H, S))=\left\{(x H, y H): \leftrightarrow x^{-1} y \in H S H\right\} .
$$

The digraph $\operatorname{Cos}(G, H, S)$ is called a Sabidussi coset digraph of G.

Wreath Products

Definition
 Let Γ_{1} and Γ_{2} be graphs.

Wreath Products

Definition
Let Γ_{1} and Γ_{2} be graphs. The wreath product of Γ_{1} and Γ_{2},

Wreath Products

Definition
 Let Γ_{1} and Γ_{2} be graphs. The wreath product of Γ_{1} and Γ_{2}, denoted Γ_{1} \「2,

Wreath Products

Definition

Let Γ_{1} and Γ_{2} be graphs. The wreath product of Γ_{1} and Γ_{2}, denoted
Γ_{1} 乙 Γ_{2}, is the graph with vertex set $V\left(\Gamma_{1}\right) \times V\left(\Gamma_{2}\right)$

Wreath Products

Definition

Let Γ_{1} and Γ_{2} be graphs. The wreath product of Γ_{1} and Γ_{2}, denoted
Γ_{1} Γ_{2}, is the graph with vertex set $V\left(\Gamma_{1}\right) \times V\left(\Gamma_{2}\right)$ and edge set

$$
\begin{gathered}
\left\{(u, v)\left(u, v^{\prime}\right): u \in V\left(\Gamma_{1}\right) \text { and } v v^{\prime} \in E\left(\Gamma_{2}\right)\right\} \\
\cup\left\{(u, v)\left(u^{\prime}, v^{\prime}\right): u u^{\prime} \in E\left(\Gamma_{1}\right) \text { and } v, v^{\prime} \in V\left(\Gamma_{2}\right)\right\} .
\end{gathered}
$$

Wreath Products

Definition

Let Γ_{1} and Γ_{2} be graphs. The wreath product of Γ_{1} and Γ_{2}, denoted Γ_{1} Γ_{2}, is the graph with vertex set $V\left(\Gamma_{1}\right) \times V\left(\Gamma_{2}\right)$ and edge set

$$
\begin{gathered}
\left\{(u, v)\left(u, v^{\prime}\right): u \in V\left(\Gamma_{1}\right) \text { and } v v^{\prime} \in E\left(\Gamma_{2}\right)\right\} \\
\cup\left\{(u, v)\left(u^{\prime}, v^{\prime}\right): u u^{\prime} \in E\left(\Gamma_{1}\right) \text { and } v, v^{\prime} \in V\left(\Gamma_{2}\right)\right\} .
\end{gathered}
$$

Intuitively, $\Gamma_{1} \ \Gamma_{2}$ is constructed as follows.

Wreath Products

Definition

Let Γ_{1} and Γ_{2} be graphs. The wreath product of Γ_{1} and Γ_{2}, denoted $\Gamma_{1} \imath \Gamma_{2}$, is the graph with vertex set $V\left(\Gamma_{1}\right) \times V\left(\Gamma_{2}\right)$ and edge set

$$
\begin{gathered}
\left\{(u, v)\left(u, v^{\prime}\right): u \in V\left(\Gamma_{1}\right) \text { and } v v^{\prime} \in E\left(\Gamma_{2}\right)\right\} \\
\cup\left\{(u, v)\left(u^{\prime}, v^{\prime}\right): u u^{\prime} \in E\left(\Gamma_{1}\right) \text { and } v, v^{\prime} \in V\left(\Gamma_{2}\right)\right\} .
\end{gathered}
$$

Intuitively, $\Gamma_{1} \backslash \Gamma_{2}$ is constructed as follows. First, we have $\left|V\left(\Gamma_{1}\right)\right|$ copies of the digraph Γ_{2},

Wreath Products

Definition

Let Γ_{1} and Γ_{2} be graphs. The wreath product of Γ_{1} and Γ_{2}, denoted
$\Gamma_{1} \imath \Gamma_{2}$, is the graph with vertex set $V\left(\Gamma_{1}\right) \times V\left(\Gamma_{2}\right)$ and edge set

$$
\begin{gathered}
\left\{(u, v)\left(u, v^{\prime}\right): u \in V\left(\Gamma_{1}\right) \text { and } v v^{\prime} \in E\left(\Gamma_{2}\right)\right\} \\
\cup\left\{(u, v)\left(u^{\prime}, v^{\prime}\right): u u^{\prime} \in E\left(\Gamma_{1}\right) \text { and } v, v^{\prime} \in V\left(\Gamma_{2}\right)\right\} .
\end{gathered}
$$

Intuitively, $\Gamma_{1} \backslash \Gamma_{2}$ is constructed as follows. First, we have $\left|V\left(\Gamma_{1}\right)\right|$ copies of the digraph Γ_{2}, with these $\left|V\left(\Gamma_{1}\right)\right|$ copies indexed by elements of $V\left(\Gamma_{1}\right)$.

Wreath Products

Definition

Let Γ_{1} and Γ_{2} be graphs. The wreath product of Γ_{1} and Γ_{2}, denoted $\Gamma_{1} \backslash \Gamma_{2}$, is the graph with vertex set $V\left(\Gamma_{1}\right) \times V\left(\Gamma_{2}\right)$ and edge set

$$
\begin{gathered}
\left\{(u, v)\left(u, v^{\prime}\right): u \in V\left(\Gamma_{1}\right) \text { and } v v^{\prime} \in E\left(\Gamma_{2}\right)\right\} \\
\cup\left\{(u, v)\left(u^{\prime}, v^{\prime}\right): u u^{\prime} \in E\left(\Gamma_{1}\right) \text { and } v, v^{\prime} \in V\left(\Gamma_{2}\right)\right\} .
\end{gathered}
$$

Intuitively, $\Gamma_{1} \backslash \Gamma_{2}$ is constructed as follows. First, we have $\left|V\left(\Gamma_{1}\right)\right|$ copies of the digraph Γ_{2}, with these $\left|V\left(\Gamma_{1}\right)\right|$ copies indexed by elements of $V\left(\Gamma_{1}\right)$. Next, between corresponding copies of Γ_{2} we place every possible edge from one copy to another

Wreath Products

Definition

Let Γ_{1} and Γ_{2} be graphs. The wreath product of Γ_{1} and Γ_{2}, denoted Γ_{1} Γ_{2}, is the graph with vertex set $V\left(\Gamma_{1}\right) \times V\left(\Gamma_{2}\right)$ and edge set

$$
\begin{gathered}
\left\{(u, v)\left(u, v^{\prime}\right): u \in V\left(\Gamma_{1}\right) \text { and } v v^{\prime} \in E\left(\Gamma_{2}\right)\right\} \\
\cup\left\{(u, v)\left(u^{\prime}, v^{\prime}\right): u u^{\prime} \in E\left(\Gamma_{1}\right) \text { and } v, v^{\prime} \in V\left(\Gamma_{2}\right)\right\} .
\end{gathered}
$$

Intuitively, $\Gamma_{1} \backslash \Gamma_{2}$ is constructed as follows. First, we have $\left|V\left(\Gamma_{1}\right)\right|$ copies of the digraph Γ_{2}, with these $\left|V\left(\Gamma_{1}\right)\right|$ copies indexed by elements of $V\left(\Gamma_{1}\right)$. Next, between corresponding copies of Γ_{2} we place every possible edge from one copy to another if in Γ_{1} there is an edge between the indexing labels of the copies of Γ_{2},

Wreath Products

Definition

Let Γ_{1} and Γ_{2} be graphs. The wreath product of Γ_{1} and Γ_{2}, denoted Γ_{1} Γ_{2}, is the graph with vertex set $V\left(\Gamma_{1}\right) \times V\left(\Gamma_{2}\right)$ and edge set

$$
\begin{gathered}
\left\{(u, v)\left(u, v^{\prime}\right): u \in V\left(\Gamma_{1}\right) \text { and } v v^{\prime} \in E\left(\Gamma_{2}\right)\right\} \\
\cup\left\{(u, v)\left(u^{\prime}, v^{\prime}\right): u u^{\prime} \in E\left(\Gamma_{1}\right) \text { and } v, v^{\prime} \in V\left(\Gamma_{2}\right)\right\} .
\end{gathered}
$$

Intuitively, $\Gamma_{1} \backslash \Gamma_{2}$ is constructed as follows. First, we have $\left|V\left(\Gamma_{1}\right)\right|$ copies of the digraph Γ_{2}, with these $\left|V\left(\Gamma_{1}\right)\right|$ copies indexed by elements of $V\left(\Gamma_{1}\right)$. Next, between corresponding copies of Γ_{2} we place every possible edge from one copy to another if in Γ_{1} there is an edge between the indexing labels of the copies of Γ_{2}, and no edges otherwise.

Wreath Products

To find the wreath product of any two graphs Γ_{1} and Γ_{2} :

1. Corresponding to each vertex of Γ_{1}, put a copy of Γ_{2}.

Wreath Products

To find the wreath product of any two graphs Γ_{1} and Γ_{2} :

1. Corresponding to each vertex of Γ_{1}, put a copy of Γ_{2}.
2.

Wreath Products

To find the wreath product of any two graphs Γ_{1} and Γ_{2} :

1. Corresponding to each vertex of Γ_{1}, put a copy of Γ_{2}.
2.

$$
\Gamma_{1} \backslash \Gamma_{2}
$$

$(0, a) \bullet$

- $(1, a)$

$(0, b) \bullet$
$(0, c) \bullet$
$(0, d) \bullet$
- $(1, b)$
- $(1, c)$
- $(1, d)$

Wreath Products

To find the wreath product of any two graphs Γ_{1} and Γ_{2} :

1. Corresponding to each vertex of Γ_{1}, put a copy of Γ_{2}.
2.

$\Gamma_{1} \backslash \Gamma_{2}$

- $(1, a)$
- $(1, b)$
- $(1, c)$
- $(1, d)$

Wreath Products

To find the wreath product of any two graphs Γ_{1} and Γ_{2} :

1. Corresponding to each vertex of Γ_{1}, put a copy of Γ_{2}.
2.

$\Gamma_{1} \backslash \Gamma_{2}$

Wreath Products

To find the wreath product of any two graphs Γ_{1} and Γ_{2} :

1. Corresponding to each vertex of Γ_{1}, put a copy of Γ_{2}.
2. If v_{1} and v_{2} are adjacent in Γ_{1}, put every edge between corresponding copies of Γ_{2}.
$\Gamma_{1} \backslash \Gamma_{2}$

Wreath Products

To find the wreath product of any two graphs Γ_{1} and Γ_{2} :

1. Corresponding to each vertex of Γ_{1}, put a copy of Γ_{2}.
2. If v_{1} and v_{2} are adjacent in Γ_{1}, put every edge between corresponding copies of Γ_{2}.
Γ_{1} / Γ_{2}

Wreath Products

To find the wreath product of any two graphs Γ_{1} and Γ_{2} :

1. Corresponding to each vertex of Γ_{1}, put a copy of Γ_{2}.
2. If v_{1} and v_{2} are adjacent in Γ_{1}, put every edge between corresponding copies of Γ_{2}.

$$
\Gamma_{1} \backslash \Gamma_{2}
$$

Wreath Products

To find the wreath product of any two graphs Γ_{1} and Γ_{2} :

1. Corresponding to each vertex of Γ_{1}, put a copy of Γ_{2}.
2. If v_{1} and v_{2} are adjacent in Γ_{1}, put every edge between corresponding copies of Γ_{2}.

$$
\Gamma_{1} \backslash \Gamma_{2}
$$

Wreath Products

To find the wreath product of any two graphs Γ_{1} and Γ_{2} :

1. Corresponding to each vertex of Γ_{1}, put a copy of Γ_{2}.
2. If v_{1} and v_{2} are adjacent in Γ_{1}, put every edge between corresponding copies of Γ_{2}.

$$
\Gamma_{1} \backslash \Gamma_{2}
$$

Wreath Products

The wreath product of graphs has many names,

Wreath Products

The wreath product of graphs has many names, the lexicographic product,

Wreath Products

The wreath product of graphs has many names, the lexicographic product, graph composition,

Wreath Products

The wreath product of graphs has many names, the lexicographic product, graph composition, and the Γ_{2}-extension of Γ_{1}.

Wreath Products

Let us consider the graph C_{8} 亿 \bar{K}_{2}.

Wreath Products

Let us consider the graph C_{8} 乙 \bar{K}_{2}.

$$
a \bullet \quad \bullet b
$$

$\overline{K_{2}}$

Wreath Products

$$
\begin{aligned}
& (0, b)
\end{aligned}
$$

$$
\begin{aligned}
& (6, b) \bullet \quad \bullet(6, a) \quad \bullet(2, b) \\
& \stackrel{(5, a)}{(4, a)}(3, a) \\
& (5, b) \\
& (4, b)
\end{aligned}
$$

Wreath Products

Cayley Graph with $H \triangleleft G$.

Theorem

A Cayley digraph $\Gamma=\operatorname{Cay}(G, S)$ of a group G is isomorphic to a nontrivial wreath product of two vertex-transitive digraphs of smaller order if there exists $H \triangleleft G$ such that $S-H$ is a union of cosets of H in G. Then,

$$
\operatorname{Cay}(G, S) \cong \operatorname{Cay}\left(G / H, S_{1}\right) \prec \operatorname{Cay}\left(H, S_{2}\right)
$$

where S_{1} is the set of cosets of H contained in S and $S_{2}=S \cap H$.

Abelian group example

Example

Let $G=\mathbb{Z}_{12}$ and $H=\langle 4\rangle \cong \mathbb{Z}_{3}$. Since G is abelian, $H \triangleleft G$. The graph $\operatorname{Cay}\left(\mathbb{Z}_{12},\{2,6,10\}\right)$ has connection set the coset $\overline{2}=2+\langle 4\rangle$. Then
$\operatorname{Cay}\left(\mathbb{Z}_{12},\{2,6,10\}\right)$ is isomorphic to the wreath product
$\operatorname{Cay}\left(\mathbb{Z}_{12} /\langle 4\rangle,\{\overline{2}\}\right)$) $\operatorname{Cay}(\langle 4\rangle, \emptyset)$, where
$\operatorname{Cay}\left(\mathbb{Z}_{12} /\langle 4\rangle,\{\overline{2}\}\right) \cong \operatorname{Cay}\left(\mathbb{Z}_{4},\{2\}\right) \cong 2 K_{2}$ and $\operatorname{Cay}(\langle 4\rangle, \emptyset) \cong \overline{K_{3}}$. The vertices of the graphs can be identified via the map
$(\bar{a}, b) \mapsto a+b(\bmod 12)$, where $\bar{a}=a+\langle 4\rangle$.
$\operatorname{Cay}\left(\mathbb{Z}_{12} /\{0,4,8\},\{2,6,10\}\right) _\operatorname{Cay}(\{0,4,8\}, \emptyset)$

Remark

Remark

This theorem is only really helpful for determining when the Cayley graph of an abelian group is a wreath product as any subgroup is normal. So, we had to consider a more general case, relaxing the condition of the subgroup being normal to being any general subgroup.

Cayley Graph with $H<G$

Theorem

A Cayley digraph $\Gamma=\operatorname{Cay}(G, S)$ of a group G is isomorphic to a nontrivial wreath product of two vertex-transitive digraphs of smaller order if and only if there exists $H<G$ such that $S-H$ is a union of double cosets of H in G. If such an $H<G$ exists, then

$$
\operatorname{Cay}(G, S) \cong \operatorname{Cos}(G / L, H / L, T) \text { < } \operatorname{Cay}(H, S \cap H),
$$

where L is the subgroup of G which fixes left coset of H in G set-wise, and $T=\{(s L)(H / L): s \in S-H\}$.

Nonabelian group example

Example

Let $G=\mathbb{Z}_{2} \times D_{3}$, where $D_{3}=\left\{\tau, \rho: \tau^{2}=\rho^{3}=1 ; \tau \rho=\rho^{2} \tau\right\}$ is the dihedral group with 6 elements. Let $H=\mathbb{Z}_{2} \times\langle\tau\rangle$, which is not normal in G as $(0, \rho)(0, \tau)\left(0, \rho^{2}\right)=(0, \rho) \notin \mathbb{Z}_{2} \times\langle\tau\rangle$. Consider the Cayley graph $\operatorname{Cay}\left(\mathbb{Z}_{2} \times D_{3},\left\{(0, \rho),(1, \rho),\left(0, \rho^{2}\right),\left(1, \rho^{2}\right),(0, \tau \rho),(1, \tau \rho),\left(0, \tau \rho^{2}\right),\left(1, \tau \rho^{2}\right),\right\}\right)$.

Denote it by Γ. The connection set of Γ is exactly the double coset $H(0, \rho) H$ and $L=\left\{\left(0,1_{D_{3}}\right),\left(1,1_{D_{3}}\right)\right\}$. So using the theorem, we see that $\Gamma \cong \operatorname{Cos}(G / L, H / L, T)$ < $\operatorname{Cay}(H, S \cap H)$, where the set $T=\left\{(0, \rho) L,\left(0, \rho^{2}\right) L,(0, \tau \rho) L,\left(0, \tau \rho^{2}\right) L\right\} \subset G / L$. Note that $G / L \cong D_{3}$, $H / L \cong\langle\tau\rangle$, and $S \cap H=\emptyset$. So

$$
\Gamma \cong \operatorname{Cos}\left(D_{3},\langle\tau\rangle,\left\{\rho, \rho^{2}, \tau \rho, \tau \rho^{2}\right\}\right)\left\langle\operatorname { C a y } (\mathbb { Z } _ { 2 } \times \langle \tau \rangle , \emptyset) \cong K _ { 3 } \left\langle\overline{K_{4}} .\right.\right.
$$

The graphs can be identified via the map $(\bar{a},(c, d)) \mapsto(c, a d)$, where \bar{a} is the left coset of H containing a.

Cayley graph of $\mathbb{Z}_{2} \times D_{3}$

$\operatorname{Cos}\left(D_{3},\langle\tau\rangle,\left\{\rho, \rho^{2}, \tau \rho, \tau \rho^{2}\right\}\right)\left\langle\operatorname{Cay}\left(\mathbb{Z}_{2} \times\langle\tau\rangle, \emptyset\right)\right.$

Research/Next Steps

Question: When are coset digraphs wreath products?

References

1. Symmetry in Graphs. Ted Dobson. A book not yet published.
