

When Cayley graphs are wreath products.

6th Annual Mississippi Discrete Mathematics Workshop

Rachel V. Barber

November 10 2018

Mississippi State University Department of Mathematics and Statistics

Let G be a group and $S \subset G$ such that $1 \notin S$ and $S = S^{-1}$. Define a **Cayley digraph of** G, denoted Cay(G, S), to be the graph with vertex set

$$V(\operatorname{Cay}(G,S)) = G$$

and edge set

$$E(\operatorname{Cay}(G,S)) = \{(g,gs) : g \in G, s \in S\}.$$

We call *S* the connection set of Cay(G, S).

Let G be a group and $S \subset G$ such that $1 \notin S$ and $S = S^{-1}$. Define a **Cayley digraph of** G, denoted Cay(G, S), to be the graph with vertex set

$$V(\operatorname{Cay}(G,S)) = G$$

and edge set

$$E(\operatorname{Cay}(G,S)) = \{(g,gs) : g \in G, s \in S\}.$$

We call S the connection set of Cay(G, S).

So, the vertices of a Cayley graph are the elements of the group (and we label the vertices using the group elements), and the edge set is determined by the connection set S.

Another type of graph constructed from groups is a graph called a **coset digraph**.

Another type of graph constructed from groups is a graph called a **coset digraph**.

Definition

Let G be a group, $H \leq G$ and $S \subseteq G$. Define a **coset digraph**, denoted Cos(G, H, S) with vertex set

 $V(Cos(G, H, S)) = \{gH : g \in G\}, \text{ the set of left cosets of } H \text{ in } G,$

and arc set

$$A(\operatorname{Cos}(G, H, S)) = \{(xH, yH) : \leftrightarrow x^{-1}y \in HSH\}.$$

The digraph Cos(G, H, S) is called a **Sabidussi coset digraph of** G.

Definition Let Γ_1 and Γ_2 be graphs. **Definition** Let Γ_1 and Γ_2 be graphs. The wreath product of Γ_1 and Γ_2 ,

Definition Let Γ_1 and Γ_2 be graphs. The wreath product of Γ_1 and Γ_2 , denoted $\Gamma_1 \wr \Gamma_2$,

Let Γ_1 and Γ_2 be graphs. The wreath product of Γ_1 and Γ_2 , denoted $\Gamma_1 \wr \Gamma_2$, is the graph with vertex set $V(\Gamma_1) \times V(\Gamma_2)$

Let Γ_1 and Γ_2 be graphs. The wreath product of Γ_1 and Γ_2 , denoted $\Gamma_1 \wr \Gamma_2$, is the graph with vertex set $V(\Gamma_1) \times V(\Gamma_2)$ and edge set

$$\{(u, v)(u, v') : u \in V(\Gamma_1) \text{ and } vv' \in E(\Gamma_2)\}$$
$$\cup \{(u, v)(u', v') : uu' \in E(\Gamma_1) \text{ and } v, v' \in V(\Gamma_2)\}.$$

Let Γ_1 and Γ_2 be graphs. The **wreath product of** Γ_1 and Γ_2 , denoted $\Gamma_1 \wr \Gamma_2$, is the graph with vertex set $V(\Gamma_1) \times V(\Gamma_2)$ and edge set

$$\{(u, v)(u, v') : u \in V(\Gamma_1) \text{ and } vv' \in E(\Gamma_2)\}$$
$$\cup\{(u, v)(u', v') : uu' \in E(\Gamma_1) \text{ and } v, v' \in V(\Gamma_2)\}.$$

Intuitively, $\Gamma_1 \wr \Gamma_2$ is constructed as follows.

Let Γ_1 and Γ_2 be graphs. The **wreath product of** Γ_1 **and** Γ_2 , denoted $\Gamma_1 \wr \Gamma_2$, is the graph with vertex set $V(\Gamma_1) \times V(\Gamma_2)$ and edge set

$$\{(u, v)(u, v') : u \in V(\Gamma_1) \text{ and } vv' \in E(\Gamma_2)\}$$
$$\cup\{(u, v)(u', v') : uu' \in E(\Gamma_1) \text{ and } v, v' \in V(\Gamma_2)\}.$$

Intuitively, $\Gamma_1 \wr \Gamma_2$ is constructed as follows. First, we have $|V(\Gamma_1)|$ copies of the digraph Γ_2 ,

Let Γ_1 and Γ_2 be graphs. The **wreath product of** Γ_1 **and** Γ_2 , denoted $\Gamma_1 \wr \Gamma_2$, is the graph with vertex set $V(\Gamma_1) \times V(\Gamma_2)$ and edge set

$$\{(u, v)(u, v') : u \in V(\Gamma_1) \text{ and } vv' \in E(\Gamma_2)\}$$
$$\cup \{(u, v)(u', v') : uu' \in E(\Gamma_1) \text{ and } v, v' \in V(\Gamma_2)\}.$$

Intuitively, $\Gamma_1 \wr \Gamma_2$ is constructed as follows. First, we have $|V(\Gamma_1)|$ copies of the digraph Γ_2 , with these $|V(\Gamma_1)|$ copies indexed by elements of $V(\Gamma_1)$.

Let Γ_1 and Γ_2 be graphs. The **wreath product of** Γ_1 **and** Γ_2 , denoted $\Gamma_1 \wr \Gamma_2$, is the graph with vertex set $V(\Gamma_1) \times V(\Gamma_2)$ and edge set

$$\{(u, v)(u, v') : u \in V(\Gamma_1) \text{ and } vv' \in E(\Gamma_2)\}$$
$$\cup \{(u, v)(u', v') : uu' \in E(\Gamma_1) \text{ and } v, v' \in V(\Gamma_2)\}.$$

Intuitively, $\Gamma_1 \wr \Gamma_2$ is constructed as follows. First, we have $|V(\Gamma_1)|$ copies of the digraph Γ_2 , with these $|V(\Gamma_1)|$ copies indexed by elements of $V(\Gamma_1)$. Next, between corresponding copies of Γ_2 we place every possible edge from one copy to another

Let Γ_1 and Γ_2 be graphs. The **wreath product of** Γ_1 **and** Γ_2 , denoted $\Gamma_1 \wr \Gamma_2$, is the graph with vertex set $V(\Gamma_1) \times V(\Gamma_2)$ and edge set

$$\{(u, v)(u, v') : u \in V(\Gamma_1) \text{ and } vv' \in E(\Gamma_2)\}$$
$$\cup \{(u, v)(u', v') : uu' \in E(\Gamma_1) \text{ and } v, v' \in V(\Gamma_2)\}.$$

Intuitively, $\Gamma_1 \wr \Gamma_2$ is constructed as follows. First, we have $|V(\Gamma_1)|$ copies of the digraph Γ_2 , with these $|V(\Gamma_1)|$ copies indexed by elements of $V(\Gamma_1)$. Next, between corresponding copies of Γ_2 we place every possible edge from one copy to another if in Γ_1 there is an edge between the indexing labels of the copies of Γ_2 ,

Let Γ_1 and Γ_2 be graphs. The **wreath product of** Γ_1 **and** Γ_2 , denoted $\Gamma_1 \wr \Gamma_2$, is the graph with vertex set $V(\Gamma_1) \times V(\Gamma_2)$ and edge set

$$\{(u, v)(u, v') : u \in V(\Gamma_1) \text{ and } vv' \in E(\Gamma_2)\}$$
$$\cup\{(u, v)(u', v') : uu' \in E(\Gamma_1) \text{ and } v, v' \in V(\Gamma_2)\}.$$

Intuitively, $\Gamma_1 \wr \Gamma_2$ is constructed as follows. First, we have $|V(\Gamma_1)|$ copies of the digraph Γ_2 , with these $|V(\Gamma_1)|$ copies indexed by elements of $V(\Gamma_1)$. Next, between corresponding copies of Γ_2 we place every possible edge from one copy to another if in Γ_1 there is an edge between the indexing labels of the copies of Γ_2 , and no edges otherwise.

To find the wreath product of any two graphs Γ_1 and $\Gamma_2:$

1. Corresponding to each vertex of Γ_1 , put a copy of Γ_2 .

To find the wreath product of any two graphs Γ_1 and $\Gamma_2:$

- 1. Corresponding to each vertex of $\Gamma_1,$ put a copy of $\Gamma_2.$
- 2.

To find the wreath product of any two graphs Γ_1 and $\Gamma_2:$

1. Corresponding to each vertex of Γ_1 , put a copy of Γ_2 . 2.

To find the wreath product of any two graphs Γ_1 and $\Gamma_2:$

1. Corresponding to each vertex of Γ_1 , put a copy of Γ_2 . 2.

To find the wreath product of any two graphs Γ_1 and $\Gamma_2:$

1. Corresponding to each vertex of Γ_1 , put a copy of Γ_2 . 2.

 $\Gamma_1 \wr \Gamma_2$

To find the wreath product of any two graphs Γ_1 and Γ_2 :

- 1. Corresponding to each vertex of Γ_1 , put a copy of Γ_2 .
- If v₁ and v₂ are adjacent in Γ₁, put every edge between corresponding copies of Γ₂.

 $\Gamma_1 \wr \Gamma_2$

To find the wreath product of any two graphs Γ_1 and $\Gamma_2:$

- 1. Corresponding to each vertex of $\Gamma_1,$ put a copy of $\Gamma_2.$
- If v₁ and v₂ are adjacent in Γ₁, put every edge between corresponding copies of Γ₂.

 $\Gamma_1\wr\Gamma_2$

To find the wreath product of any two graphs Γ_1 and $\Gamma_2:$

- 1. Corresponding to each vertex of Γ_1 , put a copy of Γ_2 .
- If v₁ and v₂ are adjacent in Γ₁, put every edge between corresponding copies of Γ₂.

 $\Gamma_1 \wr \Gamma_2$

To find the wreath product of any two graphs Γ_1 and $\Gamma_2:$

- 1. Corresponding to each vertex of $\Gamma_1,$ put a copy of $\Gamma_2.$
- If v₁ and v₂ are adjacent in Γ₁, put every edge between corresponding copies of Γ₂.

 $\Gamma_1\wr\Gamma_2$

To find the wreath product of any two graphs Γ_1 and $\Gamma_2:$

- 1. Corresponding to each vertex of $\Gamma_1,$ put a copy of $\Gamma_2.$
- 2. If v_1 and v_2 are adjacent in Γ_1 , put every edge between corresponding copies of Γ_2 .

 $\Gamma_1\wr\Gamma_2$

The wreath product of graphs has many names,

The wreath product of graphs has many names, the lexicographic product,

The wreath product of graphs has many names, the lexicographic product, graph composition,

The wreath product of graphs has many names, the lexicographic product, graph composition, and the Γ_2 -extension of Γ_1 .

Let us consider the graph $C_8 \wr \overline{K}_2$.

Let us consider the graph $C_8 \wr \overline{K}_2$.

Theorem

A Cayley digraph $\Gamma = \operatorname{Cay}(G, S)$ of a group G is isomorphic to a nontrivial wreath product of two vertex-transitive digraphs of smaller order if there exists $H \triangleleft G$ such that S - H is a union of cosets of H in G. Then,

$$\operatorname{Cay}(G,S) \cong \operatorname{Cay}(G/H,S_1) \wr \operatorname{Cay}(H,S_2)$$

where S_1 is the set of cosets of H contained in S and $S_2 = S \cap H$.

Example

Let $G = \mathbb{Z}_{12}$ and $H = \langle 4 \rangle \cong \mathbb{Z}_3$. Since *G* is abelian, $H \triangleleft G$. The graph $\operatorname{Cay}(\mathbb{Z}_{12}, \{2, 6, 10\})$ has connection set the coset $\overline{2} = 2 + \langle 4 \rangle$. Then $\operatorname{Cay}(\mathbb{Z}_{12}, \{2, 6, 10\})$ is isomorphic to the wreath product $\operatorname{Cay}(\mathbb{Z}_{12}/\langle 4 \rangle, \{\overline{2}\}) \wr \operatorname{Cay}(\langle 4 \rangle, \emptyset)$, where $\operatorname{Cay}(\mathbb{Z}_{12}/\langle 4 \rangle, \{\overline{2}\}) \cong \operatorname{Cay}(\mathbb{Z}_4, \{2\}) \cong 2K_2$ and $\operatorname{Cay}(\langle 4 \rangle, \emptyset) \cong \overline{K_3}$. The vertices of the graphs can be identified via the map $(\overline{a}, b) \mapsto a + b \pmod{12}$, where $\overline{a} = a + \langle 4 \rangle$.

$\operatorname{Cay}(\mathbb{Z}_{12}/\{0,4,8\},\{2,6,10\})\wr\operatorname{Cay}(\{0,4,8\},\emptyset)$

Remark

This theorem is only really helpful for determining when the Cayley graph of an abelian group is a wreath product as any subgroup is normal. So, we had to consider a more general case, relaxing the condition of the subgroup being normal to being any general subgroup.

Theorem

A Cayley digraph $\Gamma = Cay(G, S)$ of a group G is isomorphic to a nontrivial wreath product of two vertex-transitive digraphs of smaller order if and only if there exists H < G such that S - H is a union of double cosets of H in G. If such an H < G exists, then

 $Cay(G,S) \cong Cos(G/L,H/L,T) \wr Cay(H,S \cap H),$

where L is the subgroup of G which fixes left coset of H in G set-wise, and $T = \{(sL)(H/L) : s \in S - H\}.$

Nonabelian group example

Example

Let $G = \mathbb{Z}_2 \times D_3$, where $D_3 = \{\tau, \rho : \tau^2 = \rho^3 = 1; \tau \rho = \rho^2 \tau\}$ is the dihedral group with 6 elements. Let $H = \mathbb{Z}_2 \times \langle \tau \rangle$, which is not normal in G as $(0, \rho)(0, \tau)(0, \rho^2) = (0, \rho) \notin \mathbb{Z}_2 \times \langle \tau \rangle$. Consider the Cayley graph

 $\mathsf{Cay}(\mathbb{Z}_2 \times D_3, \{(0, \rho), (1, \rho), (0, \rho^2), (1, \rho^2), (0, \tau \rho), (1, \tau \rho), (0, \tau \rho^2), (1, \tau \rho^2), \}).$

Denote it by Γ . The connection set of Γ is exactly the double coset $H(0,\rho)H$ and $L = \{(0, 1_{D_3}), (1, 1_{D_3})\}$. So using the theorem, we see that $\Gamma \cong \text{Cos}(G/L, H/L, T) \wr \text{Cay}(H, S \cap H)$, where the set $T = \{(0,\rho)L, (0,\rho^2)L, (0,\tau\rho)L, (0,\tau\rho^2)L\} \subset G/L$. Note that $G/L \cong D_3$, $H/L \cong \langle \tau \rangle$, and $S \cap H = \emptyset$. So

$$\Gamma \cong \mathsf{Cos}(D_3, \langle \tau \rangle, \{\rho, \rho^2, \tau \rho, \tau \rho^2\}) \wr \operatorname{Cay}(\mathbb{Z}_2 \times \langle \tau \rangle, \emptyset) \cong K_3 \wr \overline{K_4}.$$

The graphs can be identified via the map $(\overline{a}, (c, d)) \mapsto (c, ad)$, where \overline{a} is the left coset of H containing a.

Cayley graph of $\mathbb{Z}_2 \times D_3$

24

$\mathbf{Cos}(D_3, \langle \tau \rangle, \{\rho, \rho^2, \tau \rho, \tau \rho^2\}) \wr \operatorname{Cay}(\mathbb{Z}_2 \times \langle \tau \rangle, \emptyset)$

Question: When are coset digraphs wreath products?

1. Symmetry in Graphs. Ted Dobson. A book not yet published.