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There are many concepts of dimensions of a topological space.
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through its own metric.

L.M. Blumenthal
Theory and Applications of Distance Geometry. Clarendon Press, Oxford
(1953).



Dimensions
There are many concepts of dimensions of a topological space.

V.V. Fedorchuk
The Fundamentals of Dimension Theory, in General Topology I,
Springer-Verlag, Berlin-Heidelberg 1990.

Every metric space is entitled to have a concept of dimension defined
through its own metric.

L.M. Blumenthal
Theory and Applications of Distance Geometry. Clarendon Press, Oxford
(1953).



Metric dimension
Let X be a metric space with distance function ρ : X × X → [0,∞). Let
A ⊆ X . If for every x , y ∈ X , x 6= y implies there exists a ∈ A such that
ρ(a, x) 6= ρ(a, y) then A is said to resolve X , and is called a resolving set
or briefly a resolver for X . A resolving set of minimum cardinality is called
a metric basis for X . The cardinality of a minimum resolving set is called
the metric dimension of X and is denoted β(X ). Note that the condition
for A to be resolving may be wri�en in a logically equivalent form:

[∀a ∈ A, ρ(a, x) = ρ(a, y)]⇒ x = y .

This was the definition given by Blumenthal in his monograph of 1953.



Distance between sets
Let X be a metric space with distance function ρ. Let A,B ⊆ X . Define
the distance between the sets A and B to be

ρ(A,B) = inf{ρ(x , y) : x ∈ A, y ∈ B}.

Partition dimension
Let A = {A1,A2, . . . ,An, . . .} be a partition of X , with Ai ⊆ X for every
i = 1, 2, . . . , n, . . .. If

x 6= y ⇒ ∃i ≥ 1, ρ(Ai , x) 6= ρ(Ai , y),

then the partition A is said to resolve X . If A resolves X and the
cardinality |A | is minimum, then the cardinality βp = |A | is called the
partition dimension of X .
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Definition
For each i = 1, 2, . . . , n, . . ., let Ai ⊆ X and

A = {A1,A2, . . . ,An, . . .}.

If
x 6= y ⇒ ∃i ≥ 1, ρ(Ai , x) 6= ρ(Ai , y),

then the set A is said to resolve X . If A resolves X and the cardinality
|A | is minimum, then the cardinality δ = |A | is called the (generalized)
metric dimension of X .

I If each subset Ai = {ai} is a singleton, then we have δ(X ) = β(X ).
Hence δ(X ) is a generalization of metric dimension.

I If A is a partition of X , then δ(X ) = βp(X ), and hence δ(X )
generalizes the partition dimension.
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Bisectors

Bisector
Let X be a metric space with distance function ρ. Let u, v ∈ X . Define the
bisector of u, v to be the set

B(u, v) = {x ∈ X : ρ(u, x) = ρ(v , x)}.

I Note that B(v , u) = B(u, v) and thus the set is symmetric in u, v .
I Note also that, in any metric space X , B(u, u) is defined and
B(u, u) = X .

I This explains also that the condition that u 6= v is not stipulated in
the definition of a bisector.

Bisector of sets
Let X be a metric space with distance function ρ. Let U ,V ⊆ X . Define
the bisector of U ,V to be the set

B(U ,V ) = {x ∈ X : ρ(U , x) = ρ(V , x)}.
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Since A ⊆ X is not resolving if and only if there exist u, v ∈ X with u 6= v
such that for every a ∈ A, ρ(a, u) = ρ(a, v), A ⊆ X resolves X if and
only if no bisector contains A. This proves

Proposition
Let X be a metric space and A ⊆ X . Then A with does not resolve X if
and only if there exist u, v ∈ X with u 6= v such that A ⊆ B(u, v).

I Hence determination of bisectors is motivated by the problems about
dimension.

I In a Euclidean space, the bisectors are exactly the Euclidean
bisectors. That is,

B(x , y) = {z : |z − x | = |z − y |}.

I Under the present context, a conic section can be a bisector: let l be
any straight line and a be any fixed point not on l ; then by the
geometric definition of the parabola, B(a, l) is the parabola which is
the locus of all point whose distance to a is equal to its distance to l .
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Monotonicity
Monotonicity is a natural axiom for a well defined concept of a dimension:
if X is a subspace of Y then it is natural to require that dimX ≤ dimY .
The metric dimension fails to satisfy this natural axiom. We show this with
an example. Let t > 0.

Figure 1: An isometric subspace with a higher dimension

x2

x1 x3

y

3t
3t

t
2t



I Let t > 0 and X = {x1, x2, x3} with

ρX (x1, x2) = ρX (x1, x3) = ρX (x2, x3) = 3t.

and Y = X ∪ {y} with

ρY (x1, x2) = ρY (x1, x3) = ρY (x2, x3) = 3t,

and
ρY (x1, y) = t, ρY (x2, y) = 4t, ρY (x3, y) = 2t.

I Hence X is isometrically embedded in Y (X is an isometric subspace
of Y ).

I {y} is a metric basis for Y .
I No set with one element resolves X and {x1, x2} resolves X .
I Hence β(X ) = 2 and β(Y ) = 1.
I We have seen now that the concept of metric dimension is a peculiar

concept. This concept is a weird concept.
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Finite resolution
Let X be the metric space of Z×Z determined by the finite generating set

S = {u ∈ Z× Z : |u| = 1}.

I Then |S | = 4 and S = {(1, 0), (0, 1), (−1, 0), (0,−1)}.

I Let A ⊆ Z× Z be any finite set.
I Let p be the largest first coordinate of elements of A, and q be the

largest second coordinate of elements of A.
I Then there exists a rectangle R with top right vertex (p, q), of finite

integer side lengths such that A ⊆ R .
I Then if x = (p + 1, q) and y = (p, q + 1), then for each a ∈ A,
ρ(a, x) = ρ(a, y). (Every geodesic from a to x and to y contains
(p, q).)

I Hence A does not resolve X .
I This shows that X is not finitely resolved.
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We obtained

Theorem
If Y is the metric space of a finitely generated torsion-free abelian group
and X is an isometric subspace of Y then β(X ) ≤ β(Y ).

Problem 1
Which metric spaces and their isometric subspaces satisfy the
monotonicity axiom?

Problem 2
What are bisectors like in finite undirected graphs?

Problem 3
What are bisectors like in convex polytopes in Rn?

In addition to the monograph of Blumenthal, another main reference is:

J.G. Ratcli�e
Foundations of Hyperbolic Manifolds. Springer, New York (1994).
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We did some geometric work in the following paper.

S. Bau and A.F. Beardon
The metric dimension of metric spaces, Comput. Methods Funct. Theory
13(2013), 295–305.

The following was done, among others.

I The metric dimension of the three classical geometric spaces (of
constant curvature) were determined.

I The metric dimension of every Riemann surface is 3.
I In addition to these, we considered subsets of Euclidean spaces with

nonempty interior, a�ne hulls and convex subsets in the paper whose
reference is displayed above.

I These provided impetus for the following two papers, and may be
more.

M. Heydarpour and S. Maghsoudi
The metric dimension of geometric spaces, Topology Appl., 178(2014),
230-235.
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Geometric spaces
and

M. Heydarpour and S. Maghsoudi
The metric dimension of metric manifolds, Bull. Aust. Math. Soc., 91(2015),
508-513.

For the concept of a geometric space, our reference is the Ratcli�e
monograph.
Let n ≥ 0 be an integer. There are three types of geometric spaces of
constant curvature.

1. Euclidean space Rn is one of the main topics in linear algebra;

2. Hyperbolic space Hn is the set {x ∈ Rn : xn > 0}, with the path

metric derived from
|dx|
xn

;

3. Spherical spaces Sn is the set {x ∈ Rn+1 : ‖x‖ = 1} with the path
metric induced by the Euclidean metric in Rn+1.
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I The metric dimension of the Euclidean space was known a long time
ago (see the monograph of Blumenthal).

I The following theorem was one of the main results of the paper by
Bau and Beardon, but it was not explicitly stated there, for the reason
that it follows from a few of the other main results in the same paper.

I For the sake of a record, we are forced to state it here explicitly.

Theorem
β(Rn) = β(Hn) = β(Sn) = n + 1.

The idea of a proof will be illustrated through an example.

I Let
X = S2 = {(x , y , z) ∈ R3 : x2 + y2 + z2 = 1}.

I Let u, v ∈ S2 with u 6= v .
I Then there exists a unique plane through the three points (0, 0, 0), u

and v (Euclid stated this as an axiom).
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I This plane intersects X in a circle with the same radius 1.

I This intersection is called a great circle.
I A geodesic arc connecting u, v is determined (there is a unique one

or there are exactly two of these?).
I The bisector B(u, v) passing through the midpoint of geodesic arc
γ(u, v) connecting u and v , which is perpendicular to the geodsic
arc γ(u, v), is a great circle (a geodesic line).
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Great circle and geodesic arc.



Proof (A sketch)
I Consider the Euclidean 2-dimensional sphere X = S2 with a positive

radius. Let a ∈ X .

I Then there exists a circle of positive radius r < π centered at a in X .
I Every two points on this circle are equidistance from a.
I Hence {a} does not resolve X .
I Let a, b ∈ X with a 6= b.
I Then there is a unique geodesic arc γ connecting a and b in X .
I Let x , y ∈ X points on B(a, b), equidistant from the midpoint of γ,
x 6= y . (Note that x , y exist.)

I Then ρ(a, x) = ρ(a, y) and ρ(b, x) = ρ(b, y).
I Hence {a, b} does not resolve X .
I This shows that β(X ) ≥ 3.
I Let a, b, c ∈ X be any three points not on a same great circle.
I Every bisector in X is a great circle.
I Since {a, b, c} is not contained in a same great circle, by Proposition

on resolution, {a, b, c} resolves X . 2
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Riemann surfaces
Another main result of the paper by Bau and Beardon is

Theorem
Every Riemann surface S with its path metric satisfies β(S) = 3.

We shall not sketch a proof of this result but we pass on by mentioning
that our proof used the uniformization theorem. This was proved towards
the middle of the twentieth century and is now a well-known basic
theorem in complex function theory.

Uniformization Theorem
If S is a Riemann surface then S is the quotient of a metric space X by
the action of a discrete group G of isometries of X , where X is the
Euclidean, hyperbolic, or the Riemann sphere. If X is the Euclidean (or
complex) plane C, then S is C, a cylinder or a torus. If X is the Riemann
sphere, then S is X . If X is the hyperbolic plane, then S is the quotient of
the hyperbolic plane by some discrete group action.
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Metric spaces of semigroups

Cayley graphs of groups
Let G be a group and S ⊆ G be a generating set for G such that 1 6∈ S ,
S−1 = S . Define the Cayley graph X = X (G , S) by the specification

V (X ) = G , E (X ) = {gh : g, h ∈ G , gh−1 ∈ S}.

This definition is classical:

C. Godsil and G.F. Royle
Algebraic Graph Theory, Springer Verlag, New York 2001.

The concept was further extended to graphs of semigroups in

S. Bau
A generalization of the concept of Toeplitz graphs, Mong. Math. J.,
15(2011), 54-61.



Metric spaces of semigroups

Cayley graphs of groups
Let G be a group and S ⊆ G be a generating set for G such that 1 6∈ S ,
S−1 = S . Define the Cayley graph X = X (G , S) by the specification

V (X ) = G , E (X ) = {gh : g, h ∈ G , gh−1 ∈ S}.

This definition is classical:

C. Godsil and G.F. Royle
Algebraic Graph Theory, Springer Verlag, New York 2001.

The concept was further extended to graphs of semigroups in

S. Bau
A generalization of the concept of Toeplitz graphs, Mong. Math. J.,
15(2011), 54-61.



Metric spaces of semigroups

Cayley graphs of groups
Let G be a group and S ⊆ G be a generating set for G such that 1 6∈ S ,
S−1 = S . Define the Cayley graph X = X (G , S) by the specification

V (X ) = G , E (X ) = {gh : g, h ∈ G , gh−1 ∈ S}.

This definition is classical:

C. Godsil and G.F. Royle
Algebraic Graph Theory, Springer Verlag, New York 2001.

The concept was further extended to graphs of semigroups in

S. Bau
A generalization of the concept of Toeplitz graphs, Mong. Math. J.,
15(2011), 54-61.



Torsion
Let G be a group. If for x ∈ G there exists n ∈ N such that xn = 1 then
by the well ordering principle, there exists a smallest positive integer n
such that xn = 1. The smallest positive integer n for which xn = 1 is called
the order of x and x is called a torsion element (element of finite order).
Note that the identity element is always a torsion element of order 1.

Torsion-free
If for every x ∈ G there exists n ∈ N such that xn = 1 implies that x = 1,
then G is called torsion-free.

Torsion-free abelian groups of finite rank are determined in

A.G. Kurosh
Primitive torsionfreie abelsche Gruppen von endlichen Range, Math. Ann.,
38(1937), 175-203.
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If an additive abelian group is under consideration, we use additive
notation. The identity element for addition is called the zero element and is
denoted 0. The binary operation is denoted +, and the inverse of an
element x is its negative and is denoted −x . The condition imposed on
the generating set S now becomes 0 6∈ S and −S = S . The torsion
condition in additive notation is: there exists n ∈ N such that
nx = x + x + · · ·+ x︸ ︷︷ ︸

n

= 0.

Example
Let X = (Z× Z, S) with S = {x ∈ Z× Z : |x | = 1}. We consider a few
examples of bisectors.

I Let k, l ∈ Z, and let

Y = {(k, y) : y ∈ Z}, Z = {(l , z) : z ∈ Z}.

I If k ≡ l (mod 2), then we have that

B(Y , Z ) =
{(

k + l
2

,w
)

: w ∈ Z

}
.
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I If k 6≡ l (mod 2), then B(Y , Z ) = ∅.

I Consider A = {(0, x) : x ∈ Z} and a = (k, 0).
I Then we have

B(a,A) = {(x ,±(2x − k)) : 0 ≤ x < k} ∪ {(x ,±k) : x ≥ k}.

I With k = 3, we illustrate this in the figure below.
I Note that this is the parabola in X according to its geometric

definition and according to the metric of X .
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I If k 6≡ l (mod 2), then B(Y , Z ) = ∅.
I Consider A = {(0, x) : x ∈ Z} and a = (k, 0).
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I We now show that δ(X ) ≤ 3.

I In the above example, {(k, 0), (k − 1, 1),A} resolves X .
I Hence we have δ(X ) ≤ 3.
I Let a = (k, 0).
I Every point in B(a,A) has the same distance to {a} and A.
I The pairs of points that are equidistance to both {a} and A and of

di�erent distances to (k − 1, 1).
I Hence, every point x ∈ X \ B(a,A) is resolved by {a, (k − 1, 1),A}.
I Hence {(k, 0), (k − 1, 1),A} resolves X .
I Let

a = (1, 1), A = {(x , 0) : x ∈ Z}, B = {(0, y) : y ∈ Z}.

I It is also straightforward to verify that {a,A,B} also resolves X .
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