On Automorphisms of Haar graphs of Abelian Groups

Ted Dobson

University of Primorska

November 10, 2018

Ted Dobson

Let G be a group and $S \subseteq G$. Define a Cayley digraph of G,

Let G be a group and $S \subseteq G$. Define a Cayley digraph of G, denoted Cay(G, S),

Let G be a group and $S \subseteq G$. Define a **Cayley digraph of** G, denoted Cay(G, S), to be the digraph with V(Cay(G, S)) = G and $A(Cay(G, S)) = \{(g, gs) : g \in G, s \in S\}.$

Let G be a group and $S \subseteq G$. Define a **Cayley digraph of** G, denoted Cay(G, S), to be the digraph with V(Cay(G, S)) = G and $A(Cay(G, S)) = \{(g, gs) : g \in G, s \in S\}$. We call S the connection set of Cay(G, S).

Let G be a group and $S \subseteq G$. Define a **Cayley digraph of** G, denoted Cay(G, S), to be the digraph with V(Cay(G, S)) = G and $A(Cay(G, S)) = \{(g, gs) : g \in G, s \in S\}$. We call S the connection set of Cay(G, S).

Figure: The Cayley digraph $Cay(\mathbb{Z}_7, \{1, 2, 4\})$

Let G be a group and $S \subseteq G$.

Let G be a group and $S \subseteq G$. Define the Haar graph, denoted Haar(G, S), with connection set S

Let G be a group and $S \subseteq G$. Define the Haar graph, denoted $\operatorname{Haar}(G, S)$, with connection set S to be the graph with vertex set $\mathbb{Z}_2 \times G$

Let G be a group and $S \subseteq G$. Define the Haar graph, denoted $\operatorname{Haar}(G, S)$, with **connection set** S to be the graph with vertex set $\mathbb{Z}_2 \times G$ and edge set $\{(0, g)(1, gs) : g \in G \text{ and } s \in S\}$.

Let G be a group and $S \subseteq G$. Define the Haar graph, denoted $\operatorname{Haar}(G, S)$, with connection set S to be the graph with vertex set $\mathbb{Z}_2 \times G$ and edge set $\{(0, g)(1, gs) : g \in G \text{ and } s \in S\}$.

Figure: The Heawood graph as $Haar(\mathbb{Z}_7, \{1, 2, 4\})$

Definition

Definition

An **automorphism** of a digraph Γ is a bijection from its vertex set to its vertex set which preserves arcs.

• Both Cay(G, S) and Haar(G, S) have automorphism group that contains a natural subgroup isomorphic to G.

Definition

- Both Cay(G, S) and Haar(G, S) have automorphism group that contains a natural subgroup isomorphic to G.
- Cay(Z₇, {1,2,4}) can be shown to have an automorphism group of order 21 using results in the literature.

Definition

- Both Cay(G, S) and Haar(G, S) have automorphism group that contains a natural subgroup isomorphic to G.
- Cay(Z₇, {1, 2, 4}) can be shown to have an automorphism group of order 21 using results in the literature.
- $\operatorname{Haar}(\mathbb{Z}_7, \{1, 2, 4\})$ has automorphism group of order $336 = 2 \cdot 168$

Definition

- Both Cay(G, S) and Haar(G, S) have automorphism group that contains a natural subgroup isomorphic to G.
- Cay(Z₇, {1, 2, 4}) can be shown to have an automorphism group of order 21 using results in the literature.
- Haar(\mathbb{Z}_7 , {1, 2, 4}) has automorphism group of order 336 = 2 \cdot 168 and is PGL(2, 7).

Definition

- Both Cay(G, S) and Haar(G, S) have automorphism group that contains a natural subgroup isomorphic to G.
- Cay(Z₇, {1, 2, 4}) can be shown to have an automorphism group of order 21 using results in the literature.
- Haar(\mathbb{Z}_7 , {1, 2, 4}) has automorphism group of order 336 = 2 \cdot 168 and is PGL(2, 7). BUT

Definition

- Both Cay(G, S) and Haar(G, S) have automorphism group that contains a natural subgroup isomorphic to G.
- Cay(Z₇, {1, 2, 4}) can be shown to have an automorphism group of order 21 using results in the literature.
- Haar(Z₇, {1,2,4}) has automorphism group of order 336 = 2 ⋅ 168 and is PGL(2,7). BUT contains a natural subgroup isomorphic to the automorphism group of Cay(Z₇, {1,2,4}).

Definition

- Both Cay(G, S) and Haar(G, S) have automorphism group that contains a natural subgroup isomorphic to G.
- Cay(Z₇, {1, 2, 4}) can be shown to have an automorphism group of order 21 using results in the literature.
- Haar(Z₇, {1,2,4}) has automorphism group of order 336 = 2 ⋅ 168 and is PGL(2,7). BUT contains a natural subgroup isomorphic to the automorphism group of Cay(Z₇, {1,2,4}).
- QUESTION:

Definition

- Both Cay(G, S) and Haar(G, S) have automorphism group that contains a natural subgroup isomorphic to G.
- Cay(Z₇, {1,2,4}) can be shown to have an automorphism group of order 21 using results in the literature.
- Haar(Z₇, {1,2,4}) has automorphism group of order 336 = 2 ⋅ 168 and is PGL(2,7). BUT contains a natural subgroup isomorphic to the automorphism group of Cay(Z₇, {1,2,4}).
- QUESTION: Is there a correspondence between the automorphism group of Cay(G, S) and the automorphism group of Haar(G, S)?

Here it is!

Here it is! Let $\gamma \in Aut(Cay(G, S))$.

 $\gamma(g,gs)$

$$\gamma(g,gs) = (\gamma(g),\gamma(gs)) \in A(\operatorname{Cay}(G,S))$$

$$\gamma(g,gs) = (\gamma(g),\gamma(gs)) \in A(\operatorname{Cay}(G,S))$$

 $\implies \gamma(gs) = \gamma(g)s' \text{ for } s' \in S$

$$egin{aligned} \gamma(g,gs) &= & (\gamma(g),\gamma(gs))\in A(\mathrm{Cay}(G,S)) \ &\implies & \gamma(gs)=\gamma(g)s' ext{ for } s'\in S \ &\implies & (0,\gamma(g))(1,\gamma(g)s')\in E(\mathrm{Haar}(G,S)) \end{aligned}$$

$$\begin{array}{ll} \gamma(g,gs) &= & (\gamma(g),\gamma(gs)) \in A(\operatorname{Cay}(G,S)) \\ \implies & \gamma(gs) = \gamma(g)s' \text{ for } s' \in S \\ \implies & (0,\gamma(g))(1,\gamma(g)s') \in E(\operatorname{Haar}(G,S)) \\ \implies & (0,\gamma(g))(1,\gamma(gs)) \in E(\operatorname{Haar}(G,S)) \end{array}$$

$$\begin{array}{ll} \gamma(g,gs) &= & (\gamma(g),\gamma(gs)) \in A(\operatorname{Cay}(G,S)) \\ \implies & \gamma(gs) = \gamma(g)s' \text{ for } s' \in S \\ \implies & (0,\gamma(g))(1,\gamma(g)s') \in E(\operatorname{Haar}(G,S)) \\ \implies & (0,\gamma(g))(1,\gamma(gs)) \in E(\operatorname{Haar}(G,S)) \\ \implies & \hat{\gamma} \in \operatorname{Aut}(\operatorname{Haar}(G,S)) \end{array}$$

where $\hat{\gamma} : \mathbb{Z}_2 \times G \mapsto \mathbb{Z}_2 \times G$ is given by $\hat{\gamma}(i,j) = (i,\gamma(j))$.

$$\begin{array}{ll} \gamma(g,gs) &= & (\gamma(g),\gamma(gs)) \in A(\operatorname{Cay}(G,S)) \\ \implies & \gamma(gs) = \gamma(g)s' \text{ for } s' \in S \\ \implies & (0,\gamma(g))(1,\gamma(g)s') \in E(\operatorname{Haar}(G,S)) \\ \implies & (0,\gamma(g))(1,\gamma(gs)) \in E(\operatorname{Haar}(G,S)) \\ \implies & \hat{\gamma} \in \operatorname{Aut}(\operatorname{Haar}(G,S)) \end{array}$$

where $\hat{\gamma} : \mathbb{Z}_2 \times G \mapsto \mathbb{Z}_2 \times G$ is given by $\hat{\gamma}(i,j) = (i,\gamma(j))$. The arrows reverse!

In general, Haar graphs need not be vertex-transitive.

In general, Haar graphs need not be vertex-transitive. However, it is straightforward to show that the map $\iota : \mathbb{Z}_2 \times A \mapsto \mathbb{Z}_2 \times A$ given by $\iota(i, a) = (i + 1, -a)$,

In general, Haar graphs need not be vertex-transitive. However, it is straightforward to show that the map $\iota : \mathbb{Z}_2 \times A \mapsto \mathbb{Z}_2 \times A$ given by $\iota(i, a) = (i + 1, -a)$, A an abelian group, is always an automorphism of Haar(A, S).

In general, Haar graphs need not be vertex-transitive. However, it is straightforward to show that the map $\iota : \mathbb{Z}_2 \times A \mapsto \mathbb{Z}_2 \times A$ given by $\iota(i, a) = (i + 1, -a)$, A an abelian group, is always an automorphism of Haar(A, S). An implication of this is that Aut(Haar(A, S)) is always vertex-transitive.

Let A be an abelian group, $S \subseteq A$, and $\Gamma = \text{Haar}(A, S)$.

Let A be an abelian group, $S \subseteq A$, and $\Gamma = \text{Haar}(A, S)$. Then one of the following is true:

• Γ is disconnected with $\operatorname{Aut}(\Gamma) = \overline{K}_t \wr \operatorname{Aut}(\Gamma_1)$, where $\Gamma_1 = \operatorname{Haar}(B, S)$ is connected and $B \leq A$. In this case, $\operatorname{Aut}(\Gamma) = S_t \wr \operatorname{Aut}(\Gamma_1)$,

- Γ is disconnected with $\operatorname{Aut}(\Gamma) = \overline{K}_t \wr \operatorname{Aut}(\Gamma_1)$, where $\Gamma_1 = \operatorname{Haar}(B, S)$ is connected and $B \leq A$. In this case, $\operatorname{Aut}(\Gamma) = S_t \wr \operatorname{Aut}(\Gamma_1)$,

- Γ is disconnected with $\operatorname{Aut}(\Gamma) = \overline{K}_t \wr \operatorname{Aut}(\Gamma_1)$, where $\Gamma_1 = \operatorname{Haar}(B, S)$ is connected and $B \leq A$. In this case, $\operatorname{Aut}(\Gamma) = S_t \wr \operatorname{Aut}(\Gamma_1)$,
- Aut(Haar(A, S)) $\cong \bar{a}_L \mathbb{Z}_2 \ltimes Aut(Cay(A, a + S))\bar{a}_L^{-1}$ for some $a \in A$, or

- Γ is disconnected with $\operatorname{Aut}(\Gamma) = \overline{K}_t \wr \operatorname{Aut}(\Gamma_1)$, where $\Gamma_1 = \operatorname{Haar}(B, S)$ is connected and $B \leq A$. In this case, $\operatorname{Aut}(\Gamma) = S_t \wr \operatorname{Aut}(\Gamma_1)$,
- Aut(Haar(A, S)) $\cong \bar{a}_L \mathbb{Z}_2 \ltimes Aut(Cay(A, a + S))\bar{a}_L^{-1}$ for some $a \in A$, or
- the action of fix_{Aut(Γ)}(B) on B₁ is faithful but the actions on B₀ and B₁ are not equivalent permutation groups.

Let $s \geq 1$, and Γ a digraph.

Let $s \ge 1$, and Γ a digraph. An s-arc of Γ is a sequence x_0, x_1, \ldots, x_s such that $(x_i, x_{i+1}) \in A(\Gamma)$, $0 \le i \le s - 1$, and $x_i \ne x_{i+2}$, $0 \le i \le s - 2$.

Let $s \ge 1$, and Γ a digraph. An s-arc of Γ is a sequence x_0, x_1, \ldots, x_s such that $(x_i, x_{i+1}) \in A(\Gamma)$, $0 \le i \le s - 1$, and $x_i \ne x_{i+2}$, $0 \le i \le s - 2$. A digraph is s-arc-transitive if $Aut(\Gamma)$ is transitive on the set of s-arcs of Γ .

Let $s \ge 1$, and Γ a digraph. An s-arc of Γ is a sequence x_0, x_1, \ldots, x_s such that $(x_i, x_{i+1}) \in A(\Gamma)$, $0 \le i \le s - 1$, and $x_i \ne x_{i+2}$, $0 \le i \le s - 2$. A digraph is s-arc-transitive if $Aut(\Gamma)$ is transitive on the set of s-arcs of Γ .

The study of s-arc-transitive graphs is a major problem in algebraic graph theory

Let $s \ge 1$, and Γ a digraph. An s-arc of Γ is a sequence x_0, x_1, \ldots, x_s such that $(x_i, x_{i+1}) \in A(\Gamma)$, $0 \le i \le s - 1$, and $x_i \ne x_{i+2}$, $0 \le i \le s - 2$. A digraph is s-arc-transitive if $Aut(\Gamma)$ is transitive on the set of s-arcs of Γ .

The study of *s*-arc-transitive graphs is a major problem in algebraic graph theory (MathSciNet gives 537 publications for the search terms 2-arc-transitive and graph),

Let $s \ge 1$, and Γ a digraph. An s-arc of Γ is a sequence x_0, x_1, \ldots, x_s such that $(x_i, x_{i+1}) \in A(\Gamma)$, $0 \le i \le s - 1$, and $x_i \ne x_{i+2}$, $0 \le i \le s - 2$. A digraph is s-arc-transitive if $Aut(\Gamma)$ is transitive on the set of s-arcs of Γ .

The study of *s*-arc-transitive graphs is a major problem in algebraic graph theory (MathSciNet gives 537 publications for the search terms 2-arc-transitive and graph), and was initiated by Tutte in 1947,

Let $s \ge 1$, and Γ a digraph. An s-arc of Γ is a sequence x_0, x_1, \ldots, x_s such that $(x_i, x_{i+1}) \in A(\Gamma)$, $0 \le i \le s - 1$, and $x_i \ne x_{i+2}$, $0 \le i \le s - 2$. A digraph is s-arc-transitive if $Aut(\Gamma)$ is transitive on the set of s-arcs of Γ .

The study of *s*-arc-transitive graphs is a major problem in algebraic graph theory (MathSciNet gives 537 publications for the search terms 2-arc-transitive and graph), and was initiated by Tutte in 1947, particularly for cubic graphs.

Let $s \ge 1$, and Γ a digraph. An s-arc of Γ is a sequence x_0, x_1, \ldots, x_s such that $(x_i, x_{i+1}) \in A(\Gamma)$, $0 \le i \le s - 1$, and $x_i \ne x_{i+2}$, $0 \le i \le s - 2$. A digraph is s-arc-transitive if $Aut(\Gamma)$ is transitive on the set of s-arcs of Γ .

The study of *s*-arc-transitive graphs is a major problem in algebraic graph theory (MathSciNet gives 537 publications for the search terms 2-arc-transitive and graph), and was initiated by Tutte in 1947, particularly for cubic graphs. A main tool is the so-called Praeger Normal Quotient Lemma:

Let $s \ge 1$, and Γ a digraph. An s-arc of Γ is a sequence x_0, x_1, \ldots, x_s such that $(x_i, x_{i+1}) \in A(\Gamma)$, $0 \le i \le s - 1$, and $x_i \ne x_{i+2}$, $0 \le i \le s - 2$. A digraph is s-arc-transitive if $Aut(\Gamma)$ is transitive on the set of s-arcs of Γ .

The study of *s*-arc-transitive graphs is a major problem in algebraic graph theory (MathSciNet gives 537 publications for the search terms 2-arc-transitive and graph), and was initiated by Tutte in 1947, particularly for cubic graphs. A main tool is the so-called Praeger Normal Quotient Lemma:

Lemma

Let Γ be a connected s-arc-transitive graph with $G \leq \operatorname{Aut}(\Gamma)$ transitive on s-arcs.

Let $s \ge 1$, and Γ a digraph. An s-arc of Γ is a sequence x_0, x_1, \ldots, x_s such that $(x_i, x_{i+1}) \in A(\Gamma)$, $0 \le i \le s - 1$, and $x_i \ne x_{i+2}$, $0 \le i \le s - 2$. A digraph is s-arc-transitive if $Aut(\Gamma)$ is transitive on the set of s-arcs of Γ .

The study of *s*-arc-transitive graphs is a major problem in algebraic graph theory (MathSciNet gives 537 publications for the search terms 2-arc-transitive and graph), and was initiated by Tutte in 1947, particularly for cubic graphs. A main tool is the so-called Praeger Normal Quotient Lemma:

Lemma

Let Γ be a connected s-arc-transitive graph with $G \leq \operatorname{Aut}(\Gamma)$ transitive on s-arcs. If G has a normal intransitive subgroup N with at least three orbits,

Let $s \ge 1$, and Γ a digraph. An s-arc of Γ is a sequence x_0, x_1, \ldots, x_s such that $(x_i, x_{i+1}) \in A(\Gamma)$, $0 \le i \le s - 1$, and $x_i \ne x_{i+2}$, $0 \le i \le s - 2$. A digraph is s-arc-transitive if $Aut(\Gamma)$ is transitive on the set of s-arcs of Γ .

The study of *s*-arc-transitive graphs is a major problem in algebraic graph theory (MathSciNet gives 537 publications for the search terms 2-arc-transitive and graph), and was initiated by Tutte in 1947, particularly for cubic graphs. A main tool is the so-called Praeger Normal Quotient Lemma:

Lemma

Let Γ be a connected s-arc-transitive graph with $G \leq \operatorname{Aut}(\Gamma)$ transitive on s-arcs. If G has a normal intransitive subgroup N with at least three orbits, then there is a natural "quotient graph" Γ' which is s-arc-transitive,

Let $s \ge 1$, and Γ a digraph. An s-arc of Γ is a sequence x_0, x_1, \ldots, x_s such that $(x_i, x_{i+1}) \in A(\Gamma)$, $0 \le i \le s - 1$, and $x_i \ne x_{i+2}$, $0 \le i \le s - 2$. A digraph is s-arc-transitive if $Aut(\Gamma)$ is transitive on the set of s-arcs of Γ .

The study of *s*-arc-transitive graphs is a major problem in algebraic graph theory (MathSciNet gives 537 publications for the search terms 2-arc-transitive and graph), and was initiated by Tutte in 1947, particularly for cubic graphs. A main tool is the so-called Praeger Normal Quotient Lemma:

Lemma

Let Γ be a connected s-arc-transitive graph with $G \leq \operatorname{Aut}(\Gamma)$ transitive on s-arcs. If G has a normal intransitive subgroup N with at least three orbits, then there is a natural "quotient graph" Γ' which is s-arc-transitive, and it is theoretically possible to recover the original graph from its quotient and N.

So a natural approach to classify *s*-arc-transitive graphs is to determine all of the *s*-arc-transitive graphs which DON'T have intransitive normal subgroups

So a natural approach to classify *s*-arc-transitive graphs is to determine all of the *s*-arc-transitive graphs which DON'T have intransitive normal subgroups (so-called "base" graphs), and then consider all possible choices of N to reconstruct all *s*-arc-transitive graphs.

Definition

Let Γ be a digraph, and $s \geq 1$.

Definition

Let Γ be a digraph, and $s\geq 1.$ A sequence of arcs $a_1,\ldots,a_s\in A(\Gamma)$ is an alternating s-arc

Definition

Let Γ be a digraph, and $s \ge 1$. A sequence of arcs $a_1, \ldots, a_s \in A(\Gamma)$ is an alternating s-arc if there exists vertices $x_0, \ldots, x_s \in V(\Gamma)$, $x_i \ne x_{i+2}$, and for $1 \le m \le s$ the arc $a_m = (x_{m-1}, x_m)$ if m is odd while $a_m = (x_m, x_{m-1})$ if m is even.

Definition

Let Γ be a digraph, and $s \ge 1$. A sequence of arcs $a_1, \ldots, a_s \in A(\Gamma)$ is an **alternating** s-arc if there exists vertices $x_0, \ldots, x_s \in V(\Gamma)$, $x_i \ne x_{i+2}$, and for $1 \le m \le s$ the arc $a_m = (x_{m-1}, x_m)$ if m is odd while $a_m = (x_m, x_{m-1})$ if m is even. An **alternating** s-arc-transitive digraph is a digraph whose automorphism group is transitive on the set of alternating s-arcs.

Let $s \ge 2$ and Γ be an s-arc-transitive Cayley graph of a generalized dihedral group G with a normal abelian subgroup A of odd order and index 2 in G.

Let $s \ge 2$ and Γ be an s-arc-transitive Cayley graph of a generalized dihedral group G with a normal abelian subgroup A of odd order and index 2 in G. Then one of the following is true:

Ο Γ is disconnected,

- **Ο** Γ is disconnected,
- O Γ is a base graph,

- Γ is disconnected,
- O Γ is a base graph,
- Γ is isomorphic to the Haar graph of an s-arc-transitive Cayley graph of A,

- Γ is disconnected,
- O Γ is a base graph,
- Γ is isomorphic to the Haar graph of an s-arc-transitive Cayley graph of A,
- Γ is isomorphic to the Haar graph of an alternating s-arc-transitive Cayley digraph of A which has no edges, or

- Γ is disconnected,
- O Γ is a base graph,
- Γ is isomorphic to the Haar graph of an s-arc-transitive Cayley graph of A,
- Γ is isomorphic to the Haar graph of an alternating s-arc-transitive Cayley digraph of A which has no edges, or
- Γ is isomorphic to a Haar graph of A and its corresponding Cayley graph need not be s-arc-transitive.

- Γ is disconnected,
- O Γ is a base graph,
- Γ is isomorphic to the Haar graph of an s-arc-transitive Cayley graph of A,
- Γ is isomorphic to the Haar graph of an alternating s-arc-transitive Cayley digraph of A which has no edges, or
- Γ is isomorphic to a Haar graph of A and its corresponding Cayley graph need not be s-arc-transitive. It is one of the "weird" ones from the main automorphism group theorem.

Let $s \ge 2$ and Γ be an s-arc-transitive Cayley graph of a generalized dihedral group G with a normal abelian subgroup A of odd order and index 2 in G. Then one of the following is true:

- Γ is disconnected,
- O Γ is a base graph,
- Γ is isomorphic to the Haar graph of an s-arc-transitive Cayley graph of A,
- Γ is isomorphic to the Haar graph of an alternating s-arc-transitive Cayley digraph of A which has no edges, or
- Γ is isomorphic to a Haar graph of A and its corresponding Cayley graph need not be s-arc-transitive. It is one of the "weird" ones from the main automorphism group theorem.

This result theoretically gives a way of determining all *s*-arc-transitive Cayley graphs of generalized dihedral groups, a fairly large class of graphs.

Let $s \ge 2$ and Γ be an s-arc-transitive Cayley graph of a generalized dihedral group G with a normal abelian subgroup A of odd order and index 2 in G. Then one of the following is true:

- Γ is disconnected,
- O Γ is a base graph,
- Γ is isomorphic to the Haar graph of an s-arc-transitive Cayley graph of A,
- Γ is isomorphic to the Haar graph of an alternating s-arc-transitive Cayley digraph of A which has no edges, or
- Γ is isomorphic to a Haar graph of A and its corresponding Cayley graph need not be s-arc-transitive. It is one of the "weird" ones from the main automorphism group theorem.

This result theoretically gives a way of determining all *s*-arc-transitive Cayley graphs of generalized dihedral groups, a fairly large class of graphs. All *s*-arc-transitive Cayley graphs of cyclic and dihedral groups are known.

Thanks!