Unbreakable Frame Matroids

Tara Fife, Dillon Mayhew, James Oxley, and Charles Semple

Mississippi Discrete Math Workshop

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへ⊙

A nice notion of independence and dependence of finite sets.

A nice notion of independence and dependence of finite sets.

• A *circuit* is $C \in \mathscr{C}$ if C is a minimal dependent set.

A nice notion of independence and dependence of finite sets.

- A *circuit* is $C \in \mathscr{C}$ if C is a minimal dependent set.
- A matroid is *connected* if every two elements are in a common circuit.
- The *rank*, r(X), of a set X is the size of the largest independent subset of X.

The *circuits* of M(G) are the cycles of G.

< 円H

The *circuits* of M(G) are the cycles of G.

M(G) is *connected* iff G is 2-connected.

The *circuits* of M(G) are the cycles of G.

M(G) is *connected* iff G is 2-connected.

The *rank* of X is the number of vertices spanned by X minus the number of components of X.

Bicircular Matroids

The *circuit* of B(G) are the subdivisions of Θ -graphs, tight handcuffs, and loose hand-cuffs.

Nov2018 4 / 19

Bicircular Matroids

The *circuit* of B(G) are the subdivisions of Θ -graphs, tight handcuffs, and loose hand-cuffs.

The matroid B(G) might be connected when G has a cut vertex, and might be disconnected even when G is 2-connected. $M(G,\Psi)$

G is a graph with no isolated vertices.

 $M(G,\Psi)$

G is a graph with no isolated vertices.

 Ψ is a set of *balanced* cycles of *G*, (The cycles like in graphs).

 $M(G,\Psi)$

G is a graph with no isolated vertices.

 Ψ is a set of *balanced* cycles of *G*, (The cycles like in graphs). The other cycles of *G* are *unbalanced* (The cycles of bicircular matroids).

Rule: If C_1 and C_2 are both in Ψ and $C_1 \cap C_2$ is a path, then the third cycle in $C_1 \cup C_2$ is also in *Psi*.

 $M(G, \Psi)$

G is a graph with no isolated vertices.

 Ψ is a set of *balanced* cycles of *G*, (The cycles like in graphs). The other cycles of *G* are *unbalanced* (The cycles of bicircular matroids).

Rule: If C_1 and C_2 are both in Ψ and $C_1 \cap C_2$ is a path, then the third cycle in $C_1 \cup C_2$ is also in *Psi*.

The circuits of $M(G, \Psi)$ are elements of Ψ together with Θ -graphs and handcuffs of G using only unbalanced cycles.

Fife, Mayhew, Oxley, Semple (LSU)

Unbreakable Frame Matroids

• If M = M(G), then r(M) is |V(G)| minus the number of connected components of G.

• If M = M(G), then r(M) is |V(G)| minus the number of connected components of G.

If M = M(G, Ψ), then r(M) is |V(G)| minus the number of balanced components of G.

Recognising when $M(G, \Psi)$ is disconnected.

2 components

Recognising when $M(G, \Psi)$ is disconnected.

- 2 components
- **2** One bicomponent is balanced.

- 2 components
- **2** One bicomponent is balanced.
- **3** *C* is unBalanced iff $e \in C$.

④ Unbalanced loops at a vertex.

- 2 components
- One bicomponent is balanced.
- **3** *C* is unBalanced iff $e \in C$.
- ④ Unbalanced loops at a vertex.

We say that a connected matroid M is *unbreakable* if for every subset F of E(M), the matroid M/F is connected, except possibly with loops.

Lemma (Pfeil)

Let M be a loopless matroid, then M is unbreakable iff si(M) is unbreakable.

We say that a connected matroid M is *unbreakable* if for every subset F of E(M), the matroid M/F is connected, except possibly with loops.

Lemma (Pfeil)

Let M be a loopless matroid, then M is unbreakable iff si(M) is unbreakable.

We say that a connected matroid M is *unbreakable* if for every subset F of E(M), the matroid M/F is connected, except possibly with loops.

Lemma (Pfeil)

Let M be a loopless matroid, then M is unbreakable iff si(M) is unbreakable.

We say that a connected matroid M is *unbreakable* if for every subset F of E(M), the matroid M/F is connected, except possibly with loops.

Lemma (Pfeil)

Let M be a loopless matroid, then M is unbreakable iff si(M) is unbreakable.

Theorem (Pfeil)

We say that a connected matroid M is *unbreakable* if for every subset F of E(M), the matroid M/F is connected, except possibly with loops.

Theorem (Pfeil)

We say that a connected matroid M is *unbreakable* if for every subset F of E(M), the matroid M/F is connected, except possibly with loops.

Theorem (Pfeil)

Theorem (Pfeil)

Theorem (Pfeil) Let $M = M_1 \oplus_2 M_2$. Then M is unbreakable iff p is free in both M_1 and M_2 .

Theorem (Pfeil) Let $M = M_1 \oplus_2 M_2$. Then M is unbreakable iff p is free in both M_1 and M_2 .

• When *M* is graphic, we understand what's going on.

Let $M = M_1 \oplus_2 M_2$. Then M is unbreakable iff p is free in both M_1 and M_2 .

- When *M* is graphic, we understand what's going on.
- If G is not 3-connected then |V(G)| is small.

Theorem (Pfeil)

Let $M = M_1 \oplus_2 M_2$. Then M is unbreakable iff p is free in both M_1 and M_2 .

- When *M* is graphic, we understand what's going on.
- If G is not 3-connected then |V(G)| is small.
- If G is 3-connected, then si(G) is almost a complete graph.

Theorem (Pfeil)

(4) (3) (4) (4) (4)

イロト イヨト イヨト イヨ

Image: A Image: A

イロト イヨト イヨト イヨ

Suppose that u and v are non-adjacent vertices of G . Then $G-\{u,v\}$ is balanced.

Suppose that u and v are non-adjacent vertices of G . Then $G-\{u,v\}$ is balanced.

Suppose that u and v are non-adjacent vertices of G . Then $G-\{u,v\}$ is balanced.

Theorem

Let $M(G, \Psi)$ is a 3-connected unbreakable Frame matroid. If G has no isolated verticies and $|V(G)| \ge 7$, then si(G) has at most 2-non-edges.

Question (Peter Nelson)

Suppose we have a large complete graph H, and we arbitrarially remove at most k edges. How big can we make k to guarantee that there is some graph G, with si(G) = H, and collection Ψ , so that $M(G, \Psi)$ is a 3-connected unbreakable matroid?

Thank You!

Fife, Mayhew, Oxley, Semple (LSU)

An Example

< □ > < □ > < □ > < □ > < □ >

$$\lambda_M(X) = r(X) + r(E - X) - r(M)$$

Image: Image:

- 4 ∃ ▶

$$\lambda_M(X) = r(X) + r(E - X) - r(M)$$

If $k \leq |X| \leq |E - x|$ and $\lambda(X) \lneq k$, then X and E - X are *k-sepperators*.

- 3 ► ►

$$\lambda_M(X) = r(X) + r(E - X) - r(M)$$

If $k \leq |X| \leq |E - x|$ and $\lambda(X) \lneq k$, then X and E - X are *k-sepperators*.

If M has no 1-seperators, then M is connected.

$$\lambda_M(X) = r(X) + r(E - X) - r(M)$$

If $k \leq |X| \leq |E - x|$ and $\lambda(X) \lneq k$, then X and E - X are *k*-sepperators.

If M has no 1-seperators, then M is connected.

$$\lambda_M(X) = r(X) + r(E - X) - r(M)$$

If $k \leq |X| \leq |E - x|$ and $\lambda(X) \lneq k$, then X and E - X are *k*-sepperators.

If M has no 1-seperators, then M is connected.

$$\lambda_M(X) = r(X) + r(E - X) - r(M)$$

If $k \leq |X| \leq |E - x|$ and $\lambda(X) \lneq k$, then X and E - X are *k*-sepperators.

If M has no 1-seperators, then M is connected.

If M has no 1- or 2-sepperations, then M is 3-connected.

$$\lambda_M(X) = r(X) + r(E - X) - r(M)$$

If $k \leq |X| \leq |E - x|$ and $\lambda(X) \lneq k$, then X and E - X are *k*-sepperators.

If M has no 1-seperators, then M is connected.

If M has no 1- or 2-sepperations, then M is 3-connected.

$$\lambda_M(X) = r(X) + r(E - X) - r(M)$$

$$\lambda_M(X) = r(X) + r(E - X) - r(M)$$

$$r(\{e,f\}) = 3 - 1 = 2$$
 $r(E - \{e,f\}) = 4 - 1 = 3$ $r(M) = 4 - 0 = 4$

$$\lambda_M(X) = r(X) + r(E - X) - r(M)$$

$$r(\{e,f\}) = 3 - 1 = 2 \qquad r(E - \{e,f\}) = 4 - 1 = 3 \qquad r(M) = 4 - 0 = 4$$

$$\lambda(\{e,f\}) = 2 + 3 - 4 = 1. \qquad \text{So } \{e,f\} \text{ is a 2-seperator.}$$

$$\lambda_M(X) = r(X) + r(E - X) - r(M)$$

Suppose that u and v are non-adjacent vertices of G. Then $G - \{u, v\}$ is balanced.

Suppose that u and v are non-adjacent vertices of G. Then $G - \{u, v\}$ is balanced.

If $M = M(G, \Psi)$, then r(M) is |V(G)| minus the number of balanced components of G.

Suppose that u and v are non-adjacent vertices of G. Then $G - \{u, v\}$ is balanced.

$$r(X_1) + r(X_2) = r(X_1 \cup X_2).$$

Lemma

Suppose that u and v are non-adjacent vertices of G. Then $G - \{u, v\}$ is balanced.

$$r(X_1) + r(X_2) = r(X_1 \cup X_2).$$

Proof.

Assume C is an unbalanced cycle contained in $G - \{u, v\}$.

• = • •

Image: Image:

Lemma

Suppose that u and v are non-adjacent vertices of G. Then $G - \{u, v\}$ is balanced.

$$r(X_1) + r(X_2) = r(X_1 \cup X_2).$$

Proof.

Assume C is an unbalanced cycle contained in $G - \{u, v\}$. Then $r(M(G - u, \Psi)) = |V(G - u)| = |V(G)| - 1 = r(M(G, \Psi)) - 1$.

(日) (四) (日) (日) (日)

Lemma

Suppose that u and v are non-adjacent vertices of G. Then $G - \{u, v\}$ is balanced.

$$r(X_1) + r(X_2) = r(X_1 \cup X_2).$$

Proof.

Assume C is an unbalanced cycle contained in $G - \{u, v\}$. Then $r(M(G - u, \Psi)) = |V(G - u)| = |V(G)| - 1 = r(M(G, \Psi)) - 1$. Then the edges in G - u form a hyperplane, as do the edges in G - v.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Lemma

Suppose that u and v are non-adjacent vertices of G. Then $G - \{u, v\}$ is balanced.

$$r(X_1) + r(X_2) = r(X_1 \cup X_2).$$

Proof.

Assume C is an unbalanced cycle contained in $G - \{u, v\}$. Then $r(M(G - u, \Psi)) = |V(G - u)| = |V(G)| - 1 = r(M(G, \Psi)) - 1$. Then the edges in G - u form a hyperplane, as do the edges in G - v. Let X_u and X_v be the edges of G incident with u and v. Then X_u and X_v are circuits of M^* .

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Lemma

Suppose that u and v are non-adjacent vertices of G. Then $G - \{u, v\}$ is balanced.

$$r(X_1) + r(X_2) = r(X_1 \cup X_2).$$

Proof.

Assume *C* is an unbalanced cycle contained in $G - \{u, v\}$. Then $r(M(G - u, \Psi)) = |V(G - u)| = |V(G)| - 1 = r(M(G, \Psi)) - 1$. Then the edges in G - u form a hyperplane, as do the edges in G - v. Let X_u and X_v be the edges of *G* incident with *u* and *v*. Then X_u and X_v are circuits of M^* . We compute $r^*(X_u) = |X_u| + (r-1) - r = |X_u| - 1$ and $r^*(X_v) = |X_v| - 2$

< □ > < □ > < □ > < □ > < □ > < □ >

Lemma

Suppose that u and v are non-adjacent vertices of G. Then $G - \{u, v\}$ is balanced.

$$r(X_1) + r(X_2) = r(X_1 \cup X_2).$$

Proof.

Assume *C* is an unbalanced cycle contained in $G - \{u, v\}$. Then $r(M(G - u, \Psi)) = |V(G - u)| = |V(G)| - 1 = r(M(G, \Psi)) - 1$. Then the edges in G - u form a hyperplane, as do the edges in G - v. Let X_u and X_v be the edges of *G* incident with *u* and *v*. Then X_u and X_v are circuits of M^* . We compute $r^*(X_u) = |X_u| + (r-1) - r = |X_u| - 1$ and $r^*(X_v) = |X_v| - 2$ The hyperplanes intersect in $G - \{u, v\}$, which has rank $|V(G - \{u, v\})| = |V(G)| - 2$.

< □ > < 同 > < 回 > < 回 > < 回 >

Suppose that u and v are non-adjacent vertices of G. Then $G - \{u, v\}$ is balanced.

$$r(X_1) + r(X_2) = r(X_1 \cup X_2).$$

Corollary

If C is an unbalanced cycle, then G - C is complete.

∃ ▶ ∢

Assume that G has a 2-seperation, and show that |V(G)| is small.

Assume that G has a 2-seperation, and show that |V(G)| is small.

Assume $M(G, \Psi)$ is unbreakable and that $\{u, v\}$ is a 2-vertex cut of G, with components A and B.

Lemma

Each of $A - \{u, v\}$ and $B - \{u, v\}$ has at most three vertices.

Assume that G has a 2-seperation, and show that |V(G)| is small.

Assume $M(G, \Psi)$ is unbreakable and that $\{u, v\}$ is a 2-vertex cut of G, with components A and B.

Lemma

Each of $A - \{u, v\}$ and $B - \{u, v\}$ has at most three vertices.

