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What is a Matroid*

A nice notion of independence and dependence of finite sets.
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What is a Matroid?

A nice notion of independence and dependence of finite sets.

e A circuit is C € € if C is a minimal dependent set.
® A matroid is connected if every two elements are in a common circuit.

® The rank, r(X), of a set X is the size of the largest independent
subset of X.
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Graphic Matroids

The circuits of M(G) are the cycles
of G.
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Graphic Matroids

The circuits of M(G) are the cycles
of G.

M(G) is connected iff G is 2-
G connected.

The rank of X is the number of ver-
tices spanned by X minus the num-
ber of components of X.
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Bicircular Matroids

The circuit of B(G) are the subdivisions of
©-graphs, tight handcuffs, and loose hand-
cuffs.

G OO0
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Bicircular Matroids

The circuit of B(G) are the subdivisions of
©-graphs, tight handcuffs, and loose hand-
cuffs.

G OO0

The matroid B(G) might be connected
when G has a cut vertex, and might be dis-
connected even when G is 2-connected.
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What is a Frame Matroid?

M(G, )

G is a graph with no isolated vertices.
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What is a Frame Matroid?

M(G, )

G is a graph with no isolated vertices.
V is a set of balanced cycles of G, (The cycles like in graphs). The other
cycles of G are unbalanced (The cycles of bicircular matroids).

Rule: If C; and G are both in W and C; NG, is a path, then the third
cycle in GGU G, is also in Psi.
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What is a Frame Matroid?

M(G, )

G is a graph with no isolated vertices.
V is a set of balanced cycles of G, (The cycles like in graphs). The other
cycles of G are unbalanced (The cycles of bicircular matroids).

Rule: If C; and G are both in W and C; NG, is a path, then the third
cycle in GGU G, is also in Psi.

OORGLORS,

The circuits of M(G, W) are elements of W together with ©-graphs and
handcuffs of G using only unbalanced cycles.
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Rank of Frame Matroids

e If M= M(G), then r(M) is |V(G)| minus the number of connected
components of G.
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Rank of Frame Matroids

e If M= M(G), then r(M) is |V(G)| minus the number of connected
components of G.

e If M= M(G,V¥), then r(M) is |V(G)| minus the number of balanced
components of G.
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Recognising when M(G, V) is disconnected.

@ 2 components
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Recognising when M(G, V) is disconnected.

@ 2 components

® One bicomponent is balanced.
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Recognising when M(G, V) is disconnected.

@ 2 components
® One bicomponent is balanced.
©® C is unBalanced iff e € C.

® Unbalanced loops at a vertex.
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Recognising when M(G, V) is disconnected.

@ 2 components
® One bicomponent is balanced.
® C is unBalanced iff e € C.

O Unbalanced loops at a vertex.
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Unbreakable Matroids

We say that a connected matroid M is unbreakable if for subset F of
E(M), the matroid M/F is connected, except possibly with loops.
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Unbreakable Matroids

We say that a connected matroid M is unbreakable if for subset F of
E(M), the matroid M/F is connected, except possibly with loops.
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Unbreakable Matroids

We say that a connected matroid M is unbreakable if for subset F of
E(M), the matroid M/F is connected, except possibly with loops.

¢ o o
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Unbreakable Matroids

We say that a connected matroid M is unbreakable if for subset F of
E(M), the matroid M/F is connected, except possibly with loops.

A/

Matroid Contraction
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Unbreakable Graphic Matroids

We say that a connected matroid M is unbreakable if for every subset F of
E(M), the matroid M/F is connected, except possibly with loops.

Lemma (Pfeil)

Let M be a loopless matroid, then M is unbreakable iff si(M) is
unbreakable.
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Unbreakable Graphic Matroids

We say that a connected matroid M is unbreakable if for every subset F of
E(M), the matroid M/F is connected, except possibly with loops.

Lemma (Pfeil)

Let M be a loopless matroid, then M is unbreakable iff si(M) is
unbreakable.

Theorem (Pfeil)

Suppose M = M(G) is a graphic matroid. Then M is unbreakable iff si(G)
is either a cycle or a complete graph.

v
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Unbreakable Graphic Matroids

We say that a connected matroid M is unbreakable if for every subset F of
E(M), the matroid M/F is connected, except possibly with loops.

Theorem (Pfeil)

Suppose M = M(G) is a graphic matroid. Then M is unbreakable iff si(G)
is either a cycle or a complete graph.

%o%.
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Understanding Unbalanced Frame Matroids

We only need to consider the case where M is 3-connected.

Theorem (Pfeil)

Let M = My &2 My. Then M is unbreakable iff p is free in both My and
M.
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Theorem (Pfeil)

Let M = My &2 My. Then M is unbreakable iff p is free in both My and
M.

® When M is graphic, we understand what's going on.
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Understanding Unbalanced Frame Matroids

We only need to consider the case where M is 3-connected.

Theorem (Pfeil)

Let M = My &2 My. Then M is unbreakable iff p is free in both My and
M.

® When M is graphic, we understand what's going on.
® If G is not 3-connected then |V(G)| is small.
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Understanding Unbalanced Frame Matroids

We only need to consider the case where M is 3-connected.

Theorem (Pfeil)

Let M = My &2 My. Then M is unbreakable iff p is free in both My and
M.

® When M is graphic, we understand what's going on.
® If G is not 3-connected then |V(G)| is small.

® If G is 3-connected, then si(G) is almost a complete graph.

Fife, Mayhew, Oxley, Semple (LSU)

Unbreakable Frame Matroids
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Contraction and Deletion

Matroid
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Contraction and Deletion

Matroid Deletion
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Contraction and Deletion

Matroid Deletion Contraction
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Contraction and Deletion

R

Matroid Deletion Contraction
Matroid Deletion Contraction
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Magic Theorem

Suppose that u and v are non-adjacent vertices of G. Then G —{u,v} is
balanced.
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Main Result

Let M(G,V) is a 3-connected unbreakable Frame matroid. If G has no
isolated verticies and |V (G)| > 7, then si(G) has at most 2-non-edges.

Question (Peter Nelson)

Suppose we have a large complete graph H, and we arbitrarially remove at
most k edges. How big can we make k to guarantee that there is some
graph G, with si(G) = H, and collection V, so that M(G,V) is a
3-connected unbreakable matroid?
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Thank You!
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An Example

Matroid
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Higher Connectivity

The connectivity function for X C E = E(M) is

Am(X) = r(X)+r(E—X)—r(M)
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Higher Connectivity

The connectivity function for X C E = E(M) is

Am(X)=r(X)+r(E—X)—r(M)

If k <|X|<|E—x|and A(X) < k, then X and E — X are k-sepperators.
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Higher Connectivity

The connectivity function for X C E = E(M) is

Am(X)=r(X)+r(E—X)—r(M)

If k <|X|<|E—x|and A(X) < k, then X and E — X are k-sepperators.

If M has no 1-seperators, then M is connected.
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Higher Connectivity

The connectivity function for X C E = E(M) is

Am(X) = r(X) +r(E = X) — r(M)

If k <|X|<|E—x|and A(X) < k, then X and E — X are k-sepperators.

If M has no 1-seperators, then M is connected.

A A\

G has two components
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Higher Connectivity

The connectivity function for X C E = E(M) is

Am(X) = r(X) +r(E = X) — r(M)

If k <|X|<|E—x|and A(X) < k, then X and E — X are k-sepperators.

If M has no 1-seperators, then M is connected.

One bicomponent is balanced
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Higher Connectivity

The connectivity function for X C E = E(M) is

Am(X)=r(X)+r(E—X)—r(M)

If k <|X|<|E—x|and A(X) < k, then X and E — X are k-sepperators.

If M has no 1-seperators, then M is connected.

C is unbalanced iff e C

If M has no 1- or 2-sepperations, then M is 3-connected.
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Higher Connectivity

The connectivity function for X C E = E(M) is

Am(X)=r(X)+r(E—X)—r(M)

If k <|X|<|E—x|and A(X) < k, then X and E — X are k-sepperators.

If M has no 1-seperators, then M is connected.

All Cycles are Balanced loops

If M has no 1- or 2-sepperations, then M is 3-connected.
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Higher Connectivity Continued

Am(X)=r(X)+r(E—X)—r(M)
If k <|X|<|E—x|and A(X) < k, then X and E — X are k-sepperators.

If M has no 1- or 2-sepperatoins, then M is 3-connected.

C is unbalanced iff ec Cor f € C
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Higher Connectivity Continued

Am(X)=r(X)+r(E—-X)—r(M)
If k <|X|<|E—x|and A(X) < k, then X and E — X are k-sepperators.
If M has no 1- or 2-sepperatoins, then M is 3-connected.

C is unbalanced iffec Cor f€ C

r{e,f)=3-1=2 r(E—{ef})=4-1=3 r(M)=4-0=4
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Higher Connectivity Continued

Am(X) =r(X)+r(E—X)—r(M)
If k <|X|<|E—x|and A(X) < k, then X and E — X are k-sepperators.

If M has no 1- or 2-sepperatoins, then M is 3-connected.

C is unbalanced iffec Cor f € C

r({e,f})=3-1=2 r(E—{e,f})=4—-1=3 r(M)=4—-0=14
A({e,f})=2+3-4=1. So {e,f} is a 2-seperator.

Fife, Mayhew, Oxley, Semple (LSU) Unbreakable Frame Matroids Nov2018 17 /19



Higher Connectivity Continued

A (X)=r(X)+r(E—X)—r(M)
If k <|X|<|E—x|and A(X) < k, then X and E — X are k-sepperators.

If M has no 1- or 2-sepperatoins, then M is 3-connected.
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Magic Theorem

Suppose that u and v are non-adjacent vertices of G. Then G —{u,v} is
balanced.
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Magic Theorem

Suppose that u and v are non-adjacent vertices of G. Then G —{u,v} is
balanced.

If M= M(G,V), then r(M) is |V(G)| minus the number of balanced
components of G.
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Magic Theorem

Suppose that u and v are non-adjacent vertices of G. Then G —{u,v} is
balanced.

r(X1)+r(X2) = r(X1 U X2).
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Magic Theorem

Suppose that u and v are non-adjacent vertices of G. Then G —{u,v} is
balanced.

r(X1)+r(X2) = r(X1 UX2).

Proof.

Assume C is an unbalanced cycle contained in G —{u,v}.
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Magic Theorem

Suppose that u and v are non-adjacent vertices of G. Then G —{u,v} is
balanced.

r(X1)+r(X2) = r(X1 UX2).

Proof.

Assume C is an unbalanced cycle contained in G —{u,v}. Then
r(M(G —u,V)) = V(G —u)| = [V(6)| - 1= r(M(G,V¥)) -1
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Magic Theorem

Suppose that u and v are non-adjacent vertices of G. Then G —{u,v} is
balanced.

r(X1)+r(X2) = r(X1 UX2).

Proof.

Assume C is an unbalanced cycle contained in G —{u,v}. Then
r(M(G —u,V))=|V(G—u)|=|V(G)|—1=r(M(G,¥))—1. Then the
edges in G — u form a hyperplane, as do the edges in G — v.
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Magic Theorem

Suppose that u and v are non-adjacent vertices of G. Then G —{u,v} is
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Proof.

Assume C is an unbalanced cycle contained in G —{u,v}. Then
r(M(G —u,V))=|V(G—u)|=|V(G)|—1=r(M(G,¥))—1. Then the
edges in G — u form a hyperplane, as do the edges in G —v. Let X, and
X, be the edges of G incident with v and v. Then X, and X, are circuits
of M*.
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Magic Theorem

Suppose that u and v are non-adjacent vertices of G. Then G —{u,v} is
balanced.

r(X1)+r(X2) = r(X1 UX2).

Proof
Assume C is an unbalanced cycle contained in G —{u,v}. Then
r(M(G —u,V))=|V(G—u)|=|V(G)|—1=r(M(G,¥))—1. Then the
edges in G — u form a hyperplane, as do the edges in G —v. Let X, and
X, be the edges of G incident with v and v. Then X, and X, are circuits
of M*. We compute r*(X,) = |Xy|+(r—1)—r=|X,|—1 and

rr(X) = X[ -2
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Magic Theorem

Suppose that u and v are non-adjacent vertices of G. Then G —{u,v} is
balanced.

r(X1)+r(X2) = r(X1 UX2).

Proof

Assume C is an unbalanced cycle contained in G —{u,v}. Then
r(M(G —u,V))=|V(G—u)|=|V(G)|—1=r(M(G,¥))—1. Then the
edges in G — u form a hyperplane, as do the edges in G —v. Let X, and
X, be the edges of G incident with v and v. Then X, and X, are circuits
of M*. We compute r*(X,) = |Xy|+(r—1)—r=|X,|—1 and

r*(Xy) = |Xv| —2 The hyperplanes intersect in G —{u, v}, which has rank
V(G —{u,v})] = V(G)| 2.
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Magic Theorem

Suppose that u and v are non-adjacent vertices of G. Then G —{u,v} is
balanced.

r(X1)+r(X2) = r(X1 U X2).

If C is an unbalanced cycle, then G — C is complete. \
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Assume that G has a 2-seperation, and show that |V/(G)| is small.
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Assume that G has a 2-seperation, and show that |V/(G)| is small.

Assume M(G, W) is unbreakable and that {u,v} is a 2-vertex cut of G,
with components A and B.

Each of A—{u,v} and B—{u,v} has at most three vertices. l
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2-seperation

Assume that G has a 2-seperation, and show that |V/(G)| is small.

Assume M(G, W) is unbreakable and that {u,v} is a 2-vertex cut of G,
with components A and B.

Each of A—{u,v} and B—{u,v} has at most three vertices. l
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