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Subsequence Sums

Definition
Let G be an abelian group. A sequence

S = g1 · . . . · g`

of terms from G is a finite, unordered string of elements gi ∈ G , i.e., a
multiset written multiplicatively.

The gi are the terms of S
|S | = ` is the length of S
σ(S) = g1 + . . .+ g` is the sum of S

Σn(S) = {g ∈ G : g is the sum of an n-term subsequence of S}
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The Erdős-Ginzburg-Ziv Theorem

Theorem (Erdős-Ginzburg-Ziv Theorem (1961))
Let S be a sequence of terms from a finite abelian group G . Then

|S | ≥ 2|G | − 1 ⇒ 0 ∈ Σ|G |(S).

I The bound 2|G | − 1 is tight for cyclic groups: 1 · . . . · 1︸ ︷︷ ︸
|G |−1

· 0 · . . . · 0︸ ︷︷ ︸
|G |−1

.

I Not tight in general

(Gao, 1995) Optimal bound

|S | ≥ |G |+ D(G )− 1,

where D(G ) is the Davenport Constant of G , i.e, the minimal
integer such that

|S | ≥ D(G ) ⇒ 0 ∈ Σ(S) :=
⋃
n≥1

Σn(S).
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If all terms of S from same coset α + H, then Σ|G |(S) ⊆ H.
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The Coset Condition

Definition
We say the sequence S of terms from the finite abelian group G satisfies
the coset condition if, for every proper subgroup H < G and α ∈ G ,
there are at least |G/H| − 1 terms of S lying outside the coset α + H.

I Equivalently, at most |S | − |G/H|+ 1 terms of S from the coset
α + H.

I Special case: H = {0} is trivial, then coset condition ensures that
the maximum multiplicity in S is at most |S | − |G |+ 1.
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Olson’s Generalization

Theorem (Olson (1977))
Let S be a sequence of terms from a finite abelian group G . Suppose S
satisfies the coset condition. Then

|S | ≥ 2|G | − 1 ⇒ Σ|G |(S) = G .

I Extended the case G = Z/pZ with p prime (Mann 1967).

Question: Is the bound |S | ≥ 2|G | − 1 tight?
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Improvements to Olson’s Result

I (Gao 1995) Suppose S satisfies the coset condition. Then

|S | ≥ |G |+ D(G )− 1 ⇒ Σ|G |(S) = G .

I Basic bounds:

1 +
r∑

i=1

(mi − 1) = D∗(G ) ≤ D(G ) ≤ |G |,

where G ∼= Z/m1Z× . . .× Z/mrZ with m1 | . . . | mr = exp(G ).

I (G., Marchan, Ordaz (2009)) Suppose S satisfies the coset
condition. Then

|S | ≥ |G |+ D∗(G )− 1 ⇒ Σ|G |(S) = G .
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An important observation

I If |S | = |G |+ n, then Σ|G |(S) = σ(S)− Σn(S).

T ←→ S · T [−1]

σ(T ) ←→ σ(S · T [−1]) = σ(S)− σ(T )

I Terms with multiplicity exceeding n are redundant. They may as
well be discarded when considering Σn(S).

I Coset condition implies max multiplicity is at most

|S | − |G |+ 1 = n + 1.

I Natural to impose max multiplicity instead at most

|S | − |G | = n.
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Tight Bounds

Theorem (G. (2018))
Let G be a finite abelian group, let n ≥ 2, and let S be a sequence of
terms from G with

(a) |S | = |G |+ n,

(b) satisfying the coset condition, and

(c) having maximum multiplicity at most n.

Then Σ|G |(S) = G whenever

1. n ≥ exp(G ), or

2. n ≥ exp(G )− 1, G ∼= H ⊕ Cexp(G), and either |H| or exp(G )
is prime, or

3. n ≥ |G |p − 1 and G is cyclic, where p is the smallest prime divisor of

|G |, or

4. n ≥ 2 and either exp(G ) ≤ 3, or |G | < 12, or
exp(G ) = 4 and |G | = 16.
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Tight Bounds

Suppose S satisfies the coset condition. Then

|S | ≥ |G |+ exp(G ) ⇒ Σ|G |(S) = G ,

with improvements for near cyclic groups that make the resulting bounds
optimal.



The Partition Theorem

Theorem (Subsums Kneser Theorem)
Let G be an abelian group, let S be a sequence with

|S | ≥ n ≥ 1 and maximum multiplicity at most n.

Let H = H(Σn(S)) = {g ∈ G : g + Σn(S) = Σn(S)}.

Then

|Σn(S)| ≥ |S | − (n − 1)|H|+ e(|H| − 1) + ρ,

where X ⊆ G/H is the subset of all x ∈ G/H having multiplicity at least
n in ϕH(S),

e ≥ 0 is the number of terms from ϕH(S) not contained in X , and

ρ = |X ||H|n + e − |S | ≥ 0.
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Consequences of the Partition Theorem

I (Bollobás-Leader) 0 /∈ Σ|G |(S)⇒ |Σ|G |(S)| ≥ |S | − |G |+ 1

I Estimates for the number of |G |-term zero-sums in a sequence of

length n. For n ≤ 19
3 |G |, there are at least

(d n2 e
|G |

)
+
(b n2 c
|G |

)
.

I Common tool used for handling zero-sum Ramsey Theory questions

I Connection with Matroid Theory:
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A Matroid Theory Conjecture

Conjecture (Schrijver and Seymour)
Let M be a matroid, let G be an abelian group, and let w : M → G be a
function. If

w(M) = {
∑
x∈B

w(x) : B is a basis for M}

is aperiodic, then

|w(M)| ≥
∑
x∈G

rk
(
w−1(x)

)
− rk(M) + 1

I To derive the previous result, take M to be |S | points in Rn in
general position, each mapped to one of the terms from S .
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Improved Version for large n

Theorem
Let G be a finite abelian group, let n ≥ 1, let S be a sequence of terms
from G , and let H = H(Σn(S)). Suppose n ≥ exp(G/H) + 1.

Then the terms of S can be partitioned into nonempty sets
A1, . . . ,An ⊆ G such that either

(i) |Σn(S)| ≥ min{|G |, |S | − n + 1}, or else

(ii) there exists a nontrivial subgroup K ≤ H < G such that

(a) Σn(S) =
n∑

i=1

Ai ,

(b) the coset condition fails for both H and K , and
(c)

∑
i∈I

Ai is a K -coset, for some I ⊆ [1, n].



Summary

Suppose S satisfies the coset condition with maximum multiplicity at
most n. Then

n ≥ exp(G ) + 1 ⇒ |Σn(S)| ≥ min{|G |, |S | − n + 1},

with improvements for near cyclic groups that make the resulting bounds
optimal.



Sumsets

Definition
For subsets A, B ⊆ G , we let

A + B = {a + b : a ∈ A, b ∈ B}

and nA = A + . . .+ A︸ ︷︷ ︸
n

If |A + B| is small (in comparison to |A| and |B|), then A, B and A + B
must be highly structured.

I If |A + B| < |A|+ |B|, then Kemperman (1960) gave a complete
recursive description of all possible A, B ⊆ G for an arbitrary abelian
group G .

I Extended to the case |A + B| ≤ |A|+ |B| (G. 2005).
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An iterated extension

Theorem (G. 2018)
Let G be a nontrivial abelian group, let A ⊆ G be a finite subset with
〈A− A〉 = G , and let n ≥ 3 be an integer. Suppose nA is aperiodic,
|A| ≥ 4 and |nA| < (|A|+ 1)n− 3. Then one of the following must hold.

(i) There is an arithmetic progression P ⊆ G such that A ⊆ P and
|P| ≤ |A|+ 1.

(ii) There are subgroups K1, K2, H < G with H = K1 ⊕ K2
∼= C2 ⊕ C2

such that

z+A =
(
x+K1

)
∪
(
y+H

)
∪. . .∪

(
(r−1)y+H

)
∪
(
ry+K2

)
with r ≥ 1,

for some z ∈ G , x ∈ H and y ∈ G \ H.

(iii) There is a subgroup H < G with |H| = 2 such that

z +A = {x} ∪
(
y +H

)
∪ . . .∪

(
ry +H

)
∪ {(r + 1)y} with r ≥ 1,

for some z ∈ G , x ∈ H and y ∈ G \ H.



An iterated extension

(iv) There is a nontrivial subgroup H < G such that

z+A = {0}∪
(
y+(H\{x})

)
∪
(

2y+H
)
∪. . .∪

(
ry+H

)
with r ≥ 1,

for some z ∈ G , x ∈ H and y ∈ G \ H, with r ≥ 2 when |H| = 2.

(v) There is a nontrivial subgroup H < G , nonempty A0 ⊆ H and set

P = A0 ∪ (y + H) ∪ . . . ∪ (ry + H) with r ≥ 1,

for some y ∈ G \ H, such that

(a) A0 ⊆ z + A ⊆ P with |P| = |A|+ ε ≤ |A|+ 1, for some z ∈ G ,
(b) nA0 is aperiodic,
(c) either |A0| = 1 or |nA0| < min{|〈A0〉∗|, (|A0|+ 1− ε)n − 3},
(d) nA \ nA0 is H-periodic, and
(e) |nA| − |A|n = |nA0| − |A0|n + εn.



Thanks!


