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Subsequence Sums

Definition
Let G be an abelian group. A sequence
S=g1-...-&

of terms from G is a finite, unordered string of elements g; € G, i.e., a
multiset written multiplicatively.

The g; are the terms of S

|S| = £ is the length of S
o(S) =g1+ ...+ g¢is the sum of S

Y,(S)={g € G: gisthe sum of an n-term subsequence of S}
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The Erd6s-Ginzburg-Ziv Theorem
Theorem (Erdés-Ginzburg-Ziv Theorem (1961))

Let S be a sequence of terms from a finite abelian group G. Then

» The bound 2|G| — 1 is tight for cyclic groups: 1-...-1-0-...-0.
—— ——
[G|-1 |G|-1
» Not tight in general

(Gao, 1995) Optimal bound
15| > |6]+D(6) -1,

where D(G) is the Davenport Constant of G, i.e, the minimal
integer such that

S|>D(G) = 0ex(5):=[]Za(S).

n>1
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The Erd6s-Ginzburg-Ziv Theorem
Theorem (Erdés-Ginzburg-Ziv Theorem (1961))

Let S be a sequence of terms from a finite abelian group G. Then

» Why zero?
Szg-...-g has Z‘G‘(S) Z{O}.
If all terms of S from same coset o + H, then X (S) C H.
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The Coset Condition

Definition

We say the sequence S of terms from the finite abelian group G satisfies
the coset condition if, for every proper subgroup H < G and «a € G,
there are at least |G/H| — 1 terms of S lying outside the coset « + H.

» Equivalently, at most |S| — |G/H| + 1 terms of S from the coset
a+ H.

> Special case: H = {0} is trivial, then coset condition ensures that
the maximum multiplicity in S is at most |S| — |G| + 1.



Olson’s Generalization

Theorem (Olson (1977))

Let S be a sequence of terms from a finite abelian group G. Suppose S
satisfies the coset condition. Then

S|>2[G]-1 = ¥5(S)=6.



Olson’s Generalization

Theorem (Olson (1977))

Let S be a sequence of terms from a finite abelian group G. Suppose S
satisfies the coset condition. Then

S|>2[G]-1 = ¥5(S)=6.

> Extended the case G = Z/pZ with p prime (Mann 1967).



Olson’s Generalization

Theorem (Olson (1977))

Let S be a sequence of terms from a finite abelian group G. Suppose S
satisfies the coset condition. Then

IS| >2|G] -1 = X5(S)=0G.
> Extended the case G = Z/pZ with p prime (Mann 1967).

Question: Is the bound |S| > 2|G| — 1 tight?
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Improvements to Olson's Result

» (Gao 1995) Suppose S satisfies the coset condition. Then

» Basic bounds:
1+ (m—1)=D*(6) <D(6) <G|,
i=1
where G 2 Z/mZ x ... x Z/m,Z with my | ... | m, = exp(G).

» (G., Marchan, Ordaz (2009)) Suppose S satisfies the coset
condition. Then

S|> (G +D*(G) -1 = ¥,5(S)=6.



An important observation

> If S| = |G| + n, then T,6/(S) = o(S) — Ta(S).

T — s. 7
a(T) — o(S- T[_l]) =0(S)—0o(T)



An important observation

> If S| = |G| + n, then T,6/(S) = o(S) — Ta(S).

T — S. U
a(T) — o(S- T[_l]) =0(S)—0o(T)

» Terms with multiplicity exceeding n are redundant. They may as
well be discarded when considering X,(5).



An important observation

> If S| = |G| + n, then T,6/(S) = o(S) — Ta(S).

T — S. U
a(T) — o(S- T[_l]) =0(S)—0o(T)

» Terms with multiplicity exceeding n are redundant. They may as
well be discarded when considering X,(5).

» Coset condition implies max multiplicity is at most

IS| =G| +1=n+1.



An important observation

> If [S| = [G] + n, then X 5(S) = o(S) — ZA(S).
T — s. 7
a(T) — o(S- T[_l]) =0(S)—0o(T)
» Terms with multiplicity exceeding n are redundant. They may as

well be discarded when considering X,(5).

v

Coset condition implies max multiplicity is at most

IS| =G| +1=n+1.

v

Natural to impose max multiplicity instead at most

S|~ 16| =n.
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Tight Bounds

Theorem (G. (2018))

Let G be a finite abelian group, let n > 2, and let S be a sequence of
terms from G with

(@) [SI=1G[+n,
(b) satisfying the coset condition, and
(c) having maximum multiplicity at most n.
Then X|6|(S) = G whenever
1. n>exp(G), or

2. n>exp(G)—1, G=H® Cupg), and either |H| or exp(G)
is prime, or

3. n> % — 1 and G is cyclic, where p is the smallest prime divisor of
|G|, or

4. n>2 and either exp(G) <3, or |G|<12, or
exp(G) =4 and |G| = 16.




Tight Bounds

Suppose S satisfies the coset condition. Then
S| =[Gl +exp(G) = X6(5) =G,

with improvements for near cyclic groups that make the resulting bounds
optimal.
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The Partition Theorem

Theorem (Subsums Kneser Theorem)
Let G be an abelian group, let S be a sequence with

|S| > n > 1 and maximum multiplicity at most n.

Let H=H(Z,(5)={ge G: g+X,(S)=2X,(5)}.
Then

£4(S)| = IS] — (n — )|H| +e(H] 1) + p.

where X C G/H is the subset of all x € G/H having multiplicity at least
nin on(S),

e > 0 is the number of terms from y(S) not contained in X, and
p=|X||Hln+e—15] >0.
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Consequences of the Partition Theorem

v

(Bollobas-Leader) 0 ¢ ¥6/(S) = |Z/6/(S)| > |S] — |G| +1
Estimates for the number of |G|-term zero-sums in a sequence of

length n. For n < 1—39|G , there are at least (\[E‘D + (ILE?JI)

Common tool used for handling zero-sum Ramsey Theory questions

v

v

v

Connection with Matroid Theory:
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Conjecture (Schrijver and Seymour)

Let M be a matroid, let G be an abelian group, and let w : M — G be a
function. If

w(M) ={>_ w(x): Bis a basis for M}
xEB
is aperiodic, then

w(M)| =3 rk(w—l(x)) ~ k(M) + 1

x€G



A Matroid Theory Conjecture

Conjecture (Schrijver and Seymour)

Let M be a matroid, let G be an abelian group, and let w : M — G be a
function. If

w(M) ={>_ w(x): Bis a basis for M}
xEB
is aperiodic, then

w(M)| =3 rk(w—l(x)) ~ k(M) + 1

x€G

> To derive the previous result, take M to be |S| points in R” in
general position, each mapped to one of the terms from S.



Improved Version for large n

Theorem

Let G be a finite abelian group, let n > 1, let S be a sequence of terms
from G, and let H = H(X,(S)). Suppose n > exp(G/H) + 1.

Then the terms of S can be partitioned into nonempty sets
Ai,..., A, C G such that either

(i) 1Zn(S)| = min{|G|, |S| — n+ 1}, or else

(ii) there exists a nontrivial subgroup K < H < G such that
(a) Za(S) = ;Ai,
(b) the coset condition fails for both H and K, and

(c) SSA;i is a K-coset, for some | C [1,n].
icl



Summary

Suppose S satisfies the coset condition with maximum multiplicity at
most n. Then

n>ep(G)+1 = [,(S) = min{|Gl,|S| —n+1},

with improvements for near cyclic groups that make the resulting bounds
optimal.
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Sumsets

Definition
For subsets A, B C G, we let

A+B={a+b: acA beB}

and nA=A+...+A
—_———

n

If |A+ B is small (in comparison to |A| and |B]), then A, B and A+ B
must be highly structured.
> If |JA+ B| < |A| 4 |BJ, then Kemperman (1960) gave a complete
recursive description of all possible A, B C G for an arbitrary abelian
group G.
» Extended to the case |A+ B| < |A| + |B| (G. 2005).



An iterated extension

Theorem (G. 2018)

Let G be a nontrivial abelian group, let A C G be a finite subset with
(A— A) = G, and let n > 3 be an integer. Suppose nA is aperiodic,
|A| > 4 and |nA| < (JA| + 1)n — 3. Then one of the following must hold.

(i) There is an arithmetic progression P C G such that A C P and
|P| <|A|+1.

(i) There are subgroups K1, Ko, H< G withH=Ki o Ko =2 G d G
such that

z+A = (x+K1)U(y+H)U. . .U((r—l)y+H)U(ry+Kg> with r > 1,

for somez€ G, x € Handy € G\ H.
(iii) There is a subgroup H < G with |H| = 2 such that

z+A:{X}U<y+H)U...U(ry+H)U{(r+1)y} with r > 1,

for somez€ G, xe Handy € G\ H.



An iterated extension

(iv) There is a nontrivial subgroup H < G such that
Z4A = {O}U<y+(H\{x}))U(2y+H)U. . .U(ry—i—H) with r > 1,

for some z € G, x € Hand y € G\ H, with r > 2 when |H| = 2.
(v) There is a nontrivial subgroup H < G, nonempty Ag C H and set

P=AU(y+H)U...U(ry+H) withr>1,

for some y € G \ H, such that

(a) Ao Cz+AC P with |P|=|Al+¢<|Al+1, for some z € G,
(b) nAq is aperiodic,

(c) either |Ag] =1 or [nAo| < min{|(Ao)«|, (JAo| +1 —€)n— 3},
(d) nA\ nAo is H-periodic, and

(e) |nA] — |A|n = |nAo| — |Ao|n + en.

b



Thanks!



