Improving Olson's Generalization of the Erdős-Ginzburg-Ziv Theorem

David J. Grynkiewicz

University of Memphis

October 3, 2018

Subsequence Sums

Definition
Let G be an abelian group. A sequence

$$
S=g_{1} \cdot \ldots \cdot g_{\ell}
$$

of terms from G is a finite, unordered string of elements $g_{i} \in G$, i.e., a multiset written multiplicatively.

Subsequence Sums

Definition
Let G be an abelian group. A sequence

$$
S=g_{1} \cdot \ldots \cdot g_{\ell}
$$

of terms from G is a finite, unordered string of elements $g_{i} \in G$, i.e., a multiset written multiplicatively.

The g_{i} are the terms of S

Subsequence Sums

Definition

Let G be an abelian group. A sequence

$$
S=g_{1} \cdot \ldots \cdot g_{\ell}
$$

of terms from G is a finite, unordered string of elements $g_{i} \in G$, i.e., a multiset written multiplicatively.

The g_{i} are the terms of S
$|S|=\ell$ is the length of S

Subsequence Sums

Definition

Let G be an abelian group. A sequence

$$
S=g_{1} \cdot \ldots \cdot g_{\ell}
$$

of terms from G is a finite, unordered string of elements $g_{i} \in G$, i.e., a multiset written multiplicatively.

The g_{i} are the terms of S
$|S|=\ell$ is the length of S
$\sigma(S)=g_{1}+\ldots+g_{\ell}$ is the sum of S

Subsequence Sums

Definition

Let G be an abelian group. A sequence

$$
S=g_{1} \cdot \ldots \cdot g_{\ell}
$$

of terms from G is a finite, unordered string of elements $g_{i} \in G$, i.e., a multiset written multiplicatively.

The g_{i} are the terms of S
$|S|=\ell$ is the length of S
$\sigma(S)=g_{1}+\ldots+g_{\ell}$ is the sum of S

$$
\Sigma_{n}(S)=\{g \in G: g \text { is the sum of an } n \text {-term subsequence of } S\}
$$

The Erdős-Ginzburg-Ziv Theorem

Theorem (Erdős-Ginzburg-Ziv Theorem (1961))
Let S be a sequence of terms from a finite abelian group G. Then

$$
|S| \geq 2|G|-1 \quad \Rightarrow \quad 0 \in \Sigma_{|G|}(S) .
$$

The Erdős-Ginzburg-Ziv Theorem

Theorem (Erdős-Ginzburg-Ziv Theorem (1961))
Let S be a sequence of terms from a finite abelian group G. Then

$$
|S| \geq 2|G|-1 \quad \Rightarrow \quad 0 \in \Sigma_{|G|}(S)
$$

- The bound $2|G|-1$ is tight for cyclic groups: $\underbrace{1 \cdot \ldots \cdot 1}_{|G|-1} \cdot \underbrace{0 \cdot \ldots \cdot 0}_{|G|-1}$.

The Erdős-Ginzburg-Ziv Theorem

Theorem (Erdős-Ginzburg-Ziv Theorem (1961))
Let S be a sequence of terms from a finite abelian group G. Then

$$
|S| \geq 2|G|-1 \quad \Rightarrow \quad 0 \in \Sigma_{|G|}(S)
$$

- The bound $2|G|-1$ is tight for cyclic groups: $\underbrace{1 \cdot \ldots \cdot 1}_{|G|-1} \cdot \underbrace{0 \cdot \ldots \cdot 0}_{|G|-1}$.
- Not tight in general

The Erdős-Ginzburg-Ziv Theorem

Theorem (Erdős-Ginzburg-Ziv Theorem (1961))
Let S be a sequence of terms from a finite abelian group G. Then

$$
|S| \geq 2|G|-1 \quad \Rightarrow \quad 0 \in \Sigma_{|G|}(S)
$$

- The bound $2|G|-1$ is tight for cyclic groups: $\underbrace{1 \cdot \ldots \cdot 1}_{|G|-1} \cdot \underbrace{0 \cdot \ldots \cdot 0}_{|G|-1}$.
- Not tight in general
(Gao, 1995) Optimal bound

$$
|S| \geq|G|+D(G)-1,
$$

where $D(G)$ is the Davenport Constant of G, i.e, the minimal integer such that

$$
|S| \geq \mathrm{D}(G) \quad \Rightarrow \quad 0 \in \Sigma(S):=\bigcup_{n \geq 1} \Sigma_{n}(S)
$$

The Erdős-Ginzburg-Ziv Theorem

Theorem (Erdős-Ginzburg-Ziv Theorem (1961))
Let S be a sequence of terms from a finite abelian group G. Then

$$
|S| \geq 2|G|-1 \quad \Rightarrow \quad 0 \in \Sigma_{|G|}(S) .
$$

- Why zero?

$$
S=g \cdot \ldots \cdot g \text { has } \Sigma_{|G|}(S)=\{0\} .
$$

The Erdős-Ginzburg-Ziv Theorem

Theorem (Erdős-Ginzburg-Ziv Theorem (1961))
Let S be a sequence of terms from a finite abelian group G. Then

$$
|S| \geq 2|G|-1 \quad \Rightarrow \quad 0 \in \Sigma_{|G|}(S) .
$$

- Why zero?
$S=g \cdot \ldots \cdot g$ has $\Sigma_{|G|}(S)=\{0\}$.
If all terms of S from same coset $\alpha+H$, then $\Sigma_{|G|}(S) \subseteq H$.

The Coset Condition

Definition

We say the sequence S of terms from the finite abelian group G satisfies the coset condition if, for every proper subgroup $H<G$ and $\alpha \in G$, there are at least $|G / H|-1$ terms of S lying outside the coset $\alpha+H$.

The Coset Condition

Definition

We say the sequence S of terms from the finite abelian group G satisfies the coset condition if, for every proper subgroup $H<G$ and $\alpha \in G$, there are at least $|G / H|-1$ terms of S lying outside the coset $\alpha+H$.

- Equivalently, at most $|S|-|G / H|+1$ terms of S from the coset $\alpha+H$.

The Coset Condition

Definition

We say the sequence S of terms from the finite abelian group G satisfies the coset condition if, for every proper subgroup $H<G$ and $\alpha \in G$, there are at least $|G / H|-1$ terms of S lying outside the coset $\alpha+H$.

- Equivalently, at most $|S|-|G / H|+1$ terms of S from the coset $\alpha+H$.
- Special case: $H=\{0\}$ is trivial, then coset condition ensures that the maximum multiplicity in S is at most $|S|-|G|+1$.

Olson's Generalization

Theorem (Olson (1977))
Let S be a sequence of terms from a finite abelian group G. Suppose S satisfies the coset condition. Then

$$
|S| \geq 2|G|-1 \quad \Rightarrow \quad \Sigma_{|G|}(S)=G .
$$

Olson's Generalization

Theorem (OIson (1977))
Let S be a sequence of terms from a finite abelian group G. Suppose S satisfies the coset condition. Then

$$
|S| \geq 2|G|-1 \quad \Rightarrow \quad \Sigma_{|G|}(S)=G .
$$

- Extended the case $G=\mathbb{Z} / p \mathbb{Z}$ with p prime (Mann 1967).

Olson's Generalization

Theorem (OIson (1977))
Let S be a sequence of terms from a finite abelian group G. Suppose S satisfies the coset condition. Then

$$
|S| \geq 2|G|-1 \quad \Rightarrow \quad \Sigma_{|G|}(S)=G
$$

- Extended the case $G=\mathbb{Z} / p \mathbb{Z}$ with p prime (Mann 1967).

Question: Is the bound $|S| \geq 2|G|-1$ tight?

Improvements to Olson's Result

- (Gao 1995) Suppose S satisfies the coset condition. Then

$$
|S| \geq|G|+\mathrm{D}(G)-1 \quad \Rightarrow \quad \Sigma_{|G|}(S)=G
$$

Improvements to Olson's Result

- (Gao 1995) Suppose S satisfies the coset condition. Then

$$
|S| \geq|G|+\mathrm{D}(G)-1 \quad \Rightarrow \quad \Sigma_{|G|}(S)=G .
$$

- Basic bounds:

$$
1+\sum_{i=1}^{r}\left(m_{i}-1\right)=\mathrm{D}^{*}(G) \leq \mathrm{D}(G) \leq|G|
$$

where $G \cong \mathbb{Z} / m_{1} \mathbb{Z} \times \ldots \times \mathbb{Z} / m_{r} \mathbb{Z}$ with $m_{1}|\ldots| m_{r}=\exp (G)$.

Improvements to Olson's Result

- (Gao 1995) Suppose S satisfies the coset condition. Then

$$
|S| \geq|G|+\mathrm{D}(G)-1 \quad \Rightarrow \quad \Sigma_{|G|}(S)=G .
$$

- Basic bounds:

$$
1+\sum_{i=1}^{r}\left(m_{i}-1\right)=\mathrm{D}^{*}(G) \leq \mathrm{D}(G) \leq|G|
$$

where $G \cong \mathbb{Z} / m_{1} \mathbb{Z} \times \ldots \times \mathbb{Z} / m_{r} \mathbb{Z}$ with $m_{1}|\ldots| m_{r}=\exp (G)$.

- (G., Marchan, Ordaz (2009)) Suppose S satisfies the coset condition. Then

$$
|S| \geq|G|+\mathrm{D}^{*}(G)-1 \quad \Rightarrow \quad \Sigma_{|G|}(S)=G .
$$

An important observation

- If $|S|=|G|+n$, then $\Sigma_{|G|}(S)=\sigma(S)-\Sigma_{n}(S)$.

$$
\begin{array}{lll}
T & \longleftrightarrow & S \cdot T^{[-1]} \\
\sigma(T) & \longleftrightarrow & \sigma\left(S \cdot T^{[-1]}\right)=\sigma(S)-\sigma(T)
\end{array}
$$

An important observation

- If $|S|=|G|+n$, then $\Sigma_{|G|}(S)=\sigma(S)-\Sigma_{n}(S)$.

$$
\begin{array}{lll}
T & \longleftrightarrow & S \cdot T^{[-1]} \\
\sigma(T) & \longleftrightarrow & \sigma\left(S \cdot T^{[-1]}\right)=\sigma(S)-\sigma(T)
\end{array}
$$

- Terms with multiplicity exceeding n are redundant. They may as well be discarded when considering $\Sigma_{n}(S)$.

An important observation

- If $|S|=|G|+n$, then $\Sigma_{|G|}(S)=\sigma(S)-\Sigma_{n}(S)$.

$$
\begin{array}{lll}
T & \longleftrightarrow & S \cdot T^{[-1]} \\
\sigma(T) & \longleftrightarrow & \sigma\left(S \cdot T^{[-1]}\right)=\sigma(S)-\sigma(T)
\end{array}
$$

- Terms with multiplicity exceeding n are redundant. They may as well be discarded when considering $\Sigma_{n}(S)$.
- Coset condition implies max multiplicity is at most

$$
|S|-|G|+1=n+1 .
$$

An important observation

- If $|S|=|G|+n$, then $\Sigma_{|G|}(S)=\sigma(S)-\Sigma_{n}(S)$.

$$
\begin{array}{lll}
T & \longleftrightarrow & S \cdot T^{[-1]} \\
\sigma(T) & \longleftrightarrow & \sigma\left(S \cdot T^{[-1]}\right)=\sigma(S)-\sigma(T)
\end{array}
$$

- Terms with multiplicity exceeding n are redundant. They may as well be discarded when considering $\Sigma_{n}(S)$.
- Coset condition implies max multiplicity is at most

$$
|S|-|G|+1=n+1 .
$$

- Natural to impose max multiplicity instead at most

$$
|S|-|G|=n .
$$

Tight Bounds

Theorem (G. (2018))
Let G be a finite abelian group, let $n \geq 2$, and let S be a sequence of terms from G with
(a) $|S|=|G|+n$,
(b) satisfying the coset condition, and
(c) having maximum multiplicity at most n.

Then $\Sigma_{|G|}(S)=G$ whenever

Tight Bounds

Theorem (G. (2018))
Let G be a finite abelian group, let $n \geq 2$, and let S be a sequence of terms from G with
(a) $|S|=|G|+n$,
(b) satisfying the coset condition, and
(c) having maximum multiplicity at most n.

Then $\Sigma_{|G|}(S)=G$ whenever

1. $n \geq \exp (G)$, or

Tight Bounds

Theorem (G. (2018))
Let G be a finite abelian group, let $n \geq 2$, and let S be a sequence of terms from G with
(a) $|S|=|G|+n$,
(b) satisfying the coset condition, and
(c) having maximum multiplicity at most n.

Then $\Sigma_{|G|}(S)=G$ whenever

1. $n \geq \exp (G)$, or
2. $n \geq \exp (G)-1, \quad G \cong H \oplus C_{\exp (G)}, \quad$ and \quad either $|H| \operatorname{or} \exp (G)$ is prime, or
3. $n \geq \frac{|G|}{p}-1$ and G is cyclic, where p is the smallest prime divisor of $|G|$, or
4. $n \geq 2$ and either $\exp (G) \leq 3$, or $|G|<12$, or $\exp (G)=4$ and $|G|=16$.

Tight Bounds

Suppose S satisfies the coset condition. Then

$$
|S| \geq|G|+\exp (G) \quad \Rightarrow \quad \Sigma_{|G|}(S)=G,
$$

with improvements for near cyclic groups that make the resulting bounds optimal.

The Partition Theorem

Theorem (Subsums Kneser Theorem)
Let G be an abelian group, let S be a sequence with
$|S| \geq n \geq 1$ and maximum multiplicity at most n.
Let $H=H\left(\Sigma_{n}(S)\right)=\left\{g \in G: g+\Sigma_{n}(S)=\Sigma_{n}(S)\right\}$.

The Partition Theorem

Theorem (Subsums Kneser Theorem)

Let G be an abelian group, let S be a sequence with
$|S| \geq n \geq 1$ and maximum multiplicity at most n.
Let $H=H\left(\Sigma_{n}(S)\right)=\left\{g \in G: g+\Sigma_{n}(S)=\Sigma_{n}(S)\right\}$.
Then

$$
\left|\Sigma_{n}(S)\right| \geq|S|-(n-1)|H|+e(|H|-1)+\rho,
$$

where $X \subseteq G / H$ is the subset of all $x \in G / H$ having multiplicity at least $n \operatorname{in} \varphi_{H}(S)$,
$e \geq 0$ is the number of terms from $\varphi_{H}(S)$ not contained in X, and $\rho=|X||H| n+e-|S| \geq 0$.

Consequences of the Partition Theorem

- (Bollobás-Leader) $0 \notin \Sigma_{|G|}(S) \Rightarrow\left|\Sigma_{|G|}(S)\right| \geq|S|-|G|+1$

Consequences of the Partition Theorem

- (Bollobás-Leader) $0 \notin \Sigma_{|G|}(S) \Rightarrow\left|\Sigma_{|G|}(S)\right| \geq|S|-|G|+1$
- Estimates for the number of $|G|$-term zero-sums in a sequence of

Consequences of the Partition Theorem

- (Bollobás-Leader) $0 \notin \Sigma_{|G|}(S) \Rightarrow\left|\Sigma_{|G|}(S)\right| \geq|S|-|G|+1$
- Estimates for the number of $|G|$-term zero-sums in a sequence of

- Common tool used for handling zero-sum Ramsey Theory questions

Consequences of the Partition Theorem

- (Bollobás-Leader) $0 \notin \Sigma_{|G|}(S) \Rightarrow\left|\Sigma_{|G|}(S)\right| \geq|S|-|G|+1$
- Estimates for the number of $|G|$-term zero-sums in a sequence of

- Common tool used for handling zero-sum Ramsey Theory questions
- Connection with Matroid Theory:

A Matroid Theory Conjecture

Conjecture (Schrijver and Seymour)
Let M be a matroid, let G be an abelian group, and let $w: M \rightarrow G$ be a function. If

$$
w(M)=\left\{\sum_{x \in B} w(x): B \text { is a basis for } M\right\}
$$

is aperiodic, then

$$
|w(M)| \geq \sum_{x \in G} \mathrm{rk}\left(w^{-1}(x)\right)-\mathrm{rk}(M)+1
$$

A Matroid Theory Conjecture

Conjecture (Schrijver and Seymour)

Let M be a matroid, let G be an abelian group, and let $w: M \rightarrow G$ be a function. If

$$
w(M)=\left\{\sum_{x \in B} w(x): B \text { is a basis for } M\right\}
$$

is aperiodic, then

$$
|w(M)| \geq \sum_{x \in G} \mathrm{rk}\left(w^{-1}(x)\right)-\mathrm{rk}(M)+1
$$

- To derive the previous result, take M to be $|S|$ points in \mathbb{R}^{n} in general position, each mapped to one of the terms from S.

Improved Version for large n

Theorem

Let G be a finite abelian group, let $n \geq 1$, let S be a sequence of terms from G, and let $H=H\left(\Sigma_{n}(S)\right)$. Suppose $n \geq \exp (G / H)+1$.
Then the terms of S can be partitioned into nonempty sets $A_{1}, \ldots, A_{n} \subseteq G$ such that either
(i) $\left|\Sigma_{n}(S)\right| \geq \min \{|G|,|S|-n+1\}$, or else
(ii) there exists a nontrivial subgroup $K \leq H<G$ such that
(a) $\Sigma_{n}(S)=\sum_{i=1}^{n} A_{i}$,
(b) the coset condition fails for both H and K, and
(c) $\sum_{i \in I} A_{i}$ is a K-coset, for some $I \subseteq[1, n]$.

Summary

Suppose S satisfies the coset condition with maximum multiplicity at most n. Then

$$
n \geq \exp (G)+1 \quad \Rightarrow \quad\left|\Sigma_{n}(S)\right| \geq \min \{|G|,|S|-n+1\}
$$

with improvements for near cyclic groups that make the resulting bounds optimal.

Sumsets

Definition
For subsets $A, B \subseteq G$, we let

$$
A+B=\{a+b: a \in A, b \in B\}
$$

and $n A=\underbrace{A+\ldots+A}_{n}$

Sumsets

Definition
For subsets $A, B \subseteq G$, we let

$$
A+B=\{a+b: a \in A, b \in B\}
$$

and $n A=\underbrace{A+\ldots+A}_{n}$
If $|A+B|$ is small (in comparison to $|A|$ and $|B|$), then A, B and $A+B$ must be highly structured.

Sumsets

Definition

For subsets $A, B \subseteq G$, we let

$$
A+B=\{a+b: a \in A, b \in B\}
$$

and $n A=\underbrace{A+\ldots+A}_{n}$
If $|A+B|$ is small (in comparison to $|A|$ and $|B|$), then A, B and $A+B$ must be highly structured.

- If $|A+B|<|A|+|B|$, then Kemperman (1960) gave a complete recursive description of all possible $A, B \subseteq G$ for an arbitrary abelian group G.

Sumsets

Definition

For subsets $A, B \subseteq G$, we let

$$
A+B=\{a+b: a \in A, b \in B\}
$$

and $n A=\underbrace{A+\ldots+A}_{n}$
If $|A+B|$ is small (in comparison to $|A|$ and $|B|$), then A, B and $A+B$ must be highly structured.

- If $|A+B|<|A|+|B|$, then Kemperman (1960) gave a complete recursive description of all possible $A, B \subseteq G$ for an arbitrary abelian group G.
- Extended to the case $|A+B| \leq|A|+|B|$ (G. 2005).

An iterated extension

Theorem (G. 2018)

Let G be a nontrivial abelian group, let $A \subseteq G$ be a finite subset with $\langle A-A\rangle=G$, and let $n \geq 3$ be an integer. Suppose $n A$ is aperiodic,
$|A| \geq 4$ and $|n A|<(|A|+1) n-3$. Then one of the following must hold.
(i) There is an arithmetic progression $P \subseteq G$ such that $A \subseteq P$ and $|P| \leq|A|+1$.
(ii) There are subgroups $K_{1}, K_{2}, H<G$ with $H=K_{1} \oplus K_{2} \cong C_{2} \oplus C_{2}$ such that
$z+A=\left(x+K_{1}\right) \cup(y+H) \cup \ldots \cup((r-1) y+H) \cup\left(r y+K_{2}\right) \quad$ with $r \geq 1$,
for some $z \in G, x \in H$ and $y \in G \backslash H$.
(iii) There is a subgroup $H<G$ with $|H|=2$ such that
$z+A=\{x\} \cup(y+H) \cup \ldots \cup(r y+H) \cup\{(r+1) y\} \quad$ with $r \geq 1$,
for some $z \in G, x \in H$ and $y \in G \backslash H$.

An iterated extension

(iv) There is a nontrivial subgroup $H<G$ such that
$z+A=\{0\} \cup(y+(H \backslash\{x\})) \cup(2 y+H) \cup \ldots \cup(r y+H) \quad$ with $r \geq 1$,
for some $z \in G, x \in H$ and $y \in G \backslash H$, with $r \geq 2$ when $|H|=2$.
(v) There is a nontrivial subgroup $H<G$, nonempty $A_{0} \subseteq H$ and set

$$
P=A_{0} \cup(y+H) \cup \ldots \cup(r y+H) \quad \text { with } r \geq 1,
$$

for some $y \in G \backslash H$, such that
(a) $A_{0} \subseteq z+A \subseteq P$ with $|P|=|A|+\epsilon \leq|A|+1$, for some $z \in G$,
(b) $n A_{0}$ is aperiodic,
(c) either $\left|A_{0}\right|=1$ or $\left|n A_{0}\right|<\min \left\{\left|\left\langle A_{0}\right\rangle_{*}\right|,\left(\left|A_{0}\right|+1-\epsilon\right) n-3\right\}$,
(d) $n A \backslash n A_{0}$ is H-periodic, and
(e) $|n A|-|A| n=\left|n A_{0}\right|-\left|A_{0}\right| n+\epsilon n$.

Thanks！

