A bilinear Bogolyubov theorem, with applications

Thái Hoàng Lê¹ & Pierre-Yves Bienvenu²

¹University of Mississippi

²Institut Camille Jordan

November 11, 2018

Thái Hoàng Lê & Pierre-Yves Bienvenu

A bilinear Bogolyubov theorem

Part I: A bilinear Bogolyubov theorem

Thái Hoàng Lê & Pierre-Yves Bienvenu

A bilinear Bogolyubov theorem

MS Discrete Workshop 2018 2/24

If $A \subset X$, then the density of A in X is $\frac{|A|}{|X|}$.

If $A \subset X$, then the density of A in X is $\frac{|A|}{|X|}$.

If $A \subset \mathbf{F}_{p}^{n}$ has density $\alpha > 0$, then A - A should contain a large subspace.

Green 2005, Sanders 2010: If $A \subset \mathbf{F}_2^n$ has density $\alpha > 0$, then A - A contains a subspace of dimension $\Omega(\alpha n)$.

Green 2005, Sanders 2010: If $A \subset \mathbf{F}_2^n$ has density $\alpha > 0$, then A - A contains a subspace of dimension $\Omega(\alpha n)$.

However, finite codimension (i.e. dimension $n - c(\alpha)$) is impossible.

Green 2005, Sanders 2010: If $A \subset \mathbf{F}_2^n$ has density $\alpha > 0$, then A - A contains a subspace of dimension $\Omega(\alpha n)$.

However, finite codimension (i.e. dimension $n - c(\alpha)$) is impossible.

Ruzsa 1991, Green 2005: The largest subspace guaranteed to be in A - A cannot have codimension $c(\alpha)\sqrt{n}$ (i.e. dimension $n - c(\alpha)\sqrt{n}$).

< 4 ₽ >

Theorem (Bogolyubov 1939)

If $A \subset \mathbf{F}_{\rho}^{n}$ has density $\alpha > 0$, then A + A - A - A contains a subspace of codimension $c(\alpha)$.

Theorem (Bogolyubov 1939)

If $A \subset \mathbf{F}_{\rho}^{n}$ has density $\alpha > 0$, then A + A - A - A contains a subspace of codimension $c(\alpha)$.

Theorem (Bogolyubov 1939)

If $A \subset \mathbf{F}_{p}^{n}$ has density $\alpha > 0$, then A + A - A - A contains a subspace of codimension $c(\alpha)$.

 Bogolyubov proved for A ⊂ Z, with subspaces replaced by Bohr sets.

Theorem (Bogolyubov 1939)

If $A \subset \mathbf{F}_{p}^{n}$ has density $\alpha > 0$, then A + A - A - A contains a subspace of codimension $c(\alpha)$.

- Bogolyubov proved for A ⊂ Z, with subspaces replaced by Bohr sets.
- Bogolyubov's proof gives $c(\alpha) = O(\frac{1}{\alpha^2})$.

Theorem (Bogolyubov 1939)

If $A \subset \mathbf{F}_{\rho}^{n}$ has density $\alpha > 0$, then A + A - A - A contains a subspace of codimension $c(\alpha)$.

- Bogolyubov proved for A
 Z, with subspaces replaced by Bohr sets.
- Bogolyubov's proof gives $c(\alpha) = O(\frac{1}{\alpha^2})$.
- Sanders 2010: $c(\alpha) = O\left(\log^4 \frac{1}{\alpha}\right)$.

イロト イポト イヨト イヨト

Theorem (Bogolyubov 1939)

If $A \subset \mathbf{F}_{\rho}^{n}$ has density $\alpha > 0$, then A + A - A - A contains a subspace of codimension $c(\alpha)$.

- Bogolyubov proved for A ⊂ Z, with subspaces replaced by Bohr sets.
- Bogolyubov's proof gives $c(\alpha) = O(\frac{1}{\alpha^2})$.
- Sanders 2010: $c(\alpha) = O\left(\log^4 \frac{1}{\alpha}\right)$.
- If A is a subspace of density α, then codim(A) = log_ρ 1/α and A + A - A - A = A. Thus we cannot do better than O (log 1/α).

We are interested in structures arising from subsets $A \subset \mathbf{F}_{p}^{n} \times \mathbf{F}_{p}^{n}$ of density $\alpha > 0$.

We are interested in structures arising from subsets $A \subset \mathbf{F}_{p}^{n} \times \mathbf{F}_{p}^{n}$ of density $\alpha > 0$.

Define

$$\phi_h A = \{ (x_1 - x_2, y) : (x_1, y), (x_2, y) \in A \}, \\ \phi_v A = \{ (x, y_1 - y_2) : (x, y_1), (x, y_2) \in A \}.$$

э.

We are interested in structures arising from subsets $A \subset \mathbf{F}_{p}^{n} \times \mathbf{F}_{p}^{n}$ of density $\alpha > 0$.

Define

$$\begin{split} \phi_h A &= \{ (x_1 - x_2, y) : (x_1, y), (x_2, y) \in A \}, \\ \phi_v A &= \{ (x, y_1 - y_2) : (x, y_1), (x, y_2) \in A \}. \end{split}$$

For a sequence w_1, w_2, \ldots, w_k of *h*'s and *v*'s, $\phi_{w_1 w_2 \cdots w_k}$ denotes $\phi_{w_1} \circ \phi_{w_2} \cdots \circ \phi_{w_k}$.

If $A \subset \mathbf{F}_{p}^{n} \times \mathbf{F}_{p}^{n}$ has density $\alpha > 0$, then $\phi_{hhvvhh}(A)$ contains a set

 $\{(x,y) \in W_1 \times W_2 : Q_1(x,y) = \ldots = Q_r(x,y) = 0\}$

where

If $A \subset \mathbf{F}_{p}^{n} \times \mathbf{F}_{p}^{n}$ has density $\alpha > 0$, then $\phi_{hhvvhh}(A)$ contains a set

$$\{(x, y) \in W_1 \times W_2 : Q_1(x, y) = \ldots = Q_r(x, y) = 0\}$$

where

• $W_1 \subset \mathbf{F}_p^n$ is a subspace of codimension r_1 ,

< < >> < <</p>

If $A \subset \mathbf{F}_{p}^{n} \times \mathbf{F}_{p}^{n}$ has density $\alpha > 0$, then $\phi_{hhvvhh}(A)$ contains a set

 $\{(x, y) \in W_1 \times W_2 : Q_1(x, y) = \ldots = Q_r(x, y) = 0\}$

where

- $W_1 \subset \mathbf{F}_p^n$ is a subspace of codimension r_1 ,
- $W_2 \subset \mathbf{F}_p^n$ is a subspace of codimension r_2 ,

< 🗇 🕨 < 🖃 🕨

If $A \subset \mathbf{F}_{p}^{n} \times \mathbf{F}_{p}^{n}$ has density $\alpha > 0$, then $\phi_{hhvvhh}(A)$ contains a set

 $\{(x, y) \in W_1 \times W_2 : Q_1(x, y) = \ldots = Q_r(x, y) = 0\}$

where

- $W_1 \subset \mathbf{F}_p^n$ is a subspace of codimension r_1 ,
- $W_2 \subset \mathbf{F}_p^n$ is a subspace of codimension r_2 ,
- Q_1, \ldots, Q_r are bilinear forms: $W_1 \times W_2 \rightarrow F_p$,

< 🗇 🕨 < 🖃 🕨

If $A \subset \mathbf{F}_{p}^{n} \times \mathbf{F}_{p}^{n}$ has density $\alpha > 0$, then $\phi_{hhvvhh}(A)$ contains a set

 $\{(x, y) \in W_1 \times W_2 : Q_1(x, y) = \ldots = Q_r(x, y) = 0\}$

where

- $W_1 \subset \mathbf{F}_p^n$ is a subspace of codimension r_1 ,
- $W_2 \subset \mathbf{F}_p^n$ is a subspace of codimension r_2 ,
- Q_1, \ldots, Q_r are bilinear forms: $W_1 \times W_2 \rightarrow F_p$,

< 🗇 🕨 🖌 🚍 🕨

If $A \subset \mathbf{F}_{p}^{n} \times \mathbf{F}_{p}^{n}$ has density $\alpha > 0$, then $\phi_{hhvvhh}(A)$ contains a set

 $\{(x, y) \in W_1 \times W_2 : Q_1(x, y) = \ldots = Q_r(x, y) = 0\}$

where

- $W_1 \subset \mathbf{F}_p^n$ is a subspace of codimension r_1 ,
- $W_2 \subset \mathbf{F}_p^n$ is a subspace of codimension r_2 ,

• Q_1, \ldots, Q_r are bilinear forms: $W_1 \times W_2 \rightarrow \mathbf{F}_p$,

and $\max(r_1, r_2, r) \leq c(\alpha)$.

If $A \subset \mathbf{F}_{p}^{n} \times \mathbf{F}_{p}^{n}$ has density $\alpha > 0$, then $\phi_{hhvvhh}(A)$ contains a set

 $\{(x, y) \in W_1 \times W_2 : Q_1(x, y) = \ldots = Q_r(x, y) = 0\}$

where

- $W_1 \subset \mathbf{F}_p^n$ is a subspace of codimension r_1 ,
- $W_2 \subset \mathbf{F}_p^n$ is a subspace of codimension r_2 ,

• Q_1, \ldots, Q_r are bilinear forms: $W_1 \times W_2 \to \mathbf{F}_{p}$,

and $\max(r_1, r_2, r) \leq c(\alpha)$.

Recall Bogolyubov's theorem: if $A \subset \mathbf{F}_{p}^{n}$ has density α , then A + A - A - A contains a subspace of codimension $r' \leq c'(\alpha)$ (= zero set of r' linear forms).

• $W_1 \subset \mathbf{F}_p^n$ is a subspace of codimension r_1 ,

A .

- $W_1 \subset \mathbf{F}_p^n$ is a subspace of codimension r_1 ,
- $W_2 \subset \mathbf{F}_p^n$ is a subspace of codimension r_2 ,

伺 ト イヨ ト イヨト

- $W_1 \subset \mathbf{F}_p^n$ is a subspace of codimension r_1 ,
- $W_2 \subset \mathbf{F}_p^n$ is a subspace of codimension r_2 ,
- Q_1, \ldots, Q_r are bilinear forms: $W_1 \times W_2 \rightarrow \mathbf{F}_{\rho}$.

A B F A B F

- $W_1 \subset \mathbf{F}_p^n$ is a subspace of codimension r_1 ,
- $W_2 \subset \mathbf{F}_p^n$ is a subspace of codimension r_2 ,
- Q_1, \ldots, Q_r are bilinear forms: $W_1 \times W_2 \rightarrow \mathbf{F}_{\rho}$.

A B F A B F

- $W_1 \subset \mathbf{F}_p^n$ is a subspace of codimension r_1 ,
- $W_2 \subset \mathbf{F}_p^n$ is a subspace of codimension r_2 ,
- Q_1, \ldots, Q_r are bilinear forms: $W_1 \times W_2 \rightarrow \mathbf{F}_{\rho}$.

Gowers-Milićević: max
$$(r_1, r_2, r) = O\left(\exp\left(\exp\left(\log^{O(1)} \frac{1}{\alpha}\right)\right)\right)$$
.

A B F A B F

- $W_1 \subset \mathbf{F}_p^n$ is a subspace of codimension r_1 ,
- $W_2 \subset \mathbf{F}_p^n$ is a subspace of codimension r_2 ,
- Q_1, \ldots, Q_r are bilinear forms: $W_1 \times W_2 \rightarrow \mathbf{F}_{\rho}$.

Gowers-Milićević:
$$\max(r_1, r_2, r) = O\left(\exp\left(\exp\left(\log^{O(1)} \frac{1}{\alpha}\right)\right)\right)$$
.

Bienvenu-L.: $\max(r_1, r) = O(\log^{O(1)} \frac{1}{\alpha}),$

.

- $W_1 \subset \mathbf{F}_p^n$ is a subspace of codimension r_1 ,
- $W_2 \subset \mathbf{F}_p^n$ is a subspace of codimension r_2 ,
- Q_1, \ldots, Q_r are bilinear forms: $W_1 \times W_2 \rightarrow \mathbf{F}_{\rho}$.

Gowers-Milićević:
$$\max(r_1, r_2, r) = O\left(\exp\left(\exp\left(\log^{O(1)} \frac{1}{\alpha}\right)\right)\right).$$

Bienvenu-L.: $\max(r_1, r) = O(\log^{O(1)} \frac{1}{\alpha})$, and $r_2 = O\left(\exp\left(\exp\left(\exp\left(\log^{O(1)} \frac{1}{\alpha}\right)\right)\right)\right)$.

Thái Hoàng Lê & Pierre-Yves Bienvenu

A (10) A (10)

Conjecture (Bienvenu-L. 2017)

There exists a sequence $w_1 w_2 \dots w_k$ of length O(1) such that

$$\max(r_1, r_2, r) = O(\log^{O(1)} \frac{1}{\alpha}).$$

Conjecture (Bienvenu-L. 2017)

There exists a sequence $w_1 w_2 \dots w_k$ of length O(1) such that

$$\max(r_1, r_2, r) = O(\log^{O(1)} \frac{1}{\alpha}).$$

Conjecture (Bienvenu-L. 2017)

There exists a sequence $w_1 w_2 \dots w_k$ of length O(1) such that

$$\max(r_1, r_2, r) = O(\log^{O(1)} \frac{1}{\alpha}).$$

Simple examples show that we cannot do better than this.

Conjecture (Bienvenu-L. 2017)

There exists a sequence $w_1 w_2 \dots w_k$ of length O(1) such that

$$\max(r_1, r_2, r) = O(\log^{O(1)} \frac{1}{\alpha}).$$

Simple examples show that we cannot do better than this.

Theorem (Hosseini-Lovett 2018)

The conjecture is true for the sequence hvvhvvvhh, and

$$\max(r_1, r_2, r) = O(\log^{80} \frac{1}{\alpha}).$$

Thái Hoàng Lê & Pierre-Yves Bienvenu
Part II: Applications

Thái Hoàng Lê & Pierre-Yves Bienvenu

A bilinear Bogolyubov theorem

글 🕨 🖌 글 MS Discrete Workshop 2018 10/24

A >

Gowers and Milićević used a variant of the bilinear Bogolyubov theorem to prove a quantitative bound for the inverse theorem for the U^4 -norm (first proved by Bergelson, Tao and Ziegler using qualitative methods).

Gowers and Milićević used a variant of the bilinear Bogolyubov theorem to prove a quantitative bound for the inverse theorem for the U^4 -norm (first proved by Bergelson, Tao and Ziegler using qualitative methods).

We used the bilinear Bogolyubov theorem to prove an instance of the Möbius randomness principle in function fields.

Recall

 $\mu(n) = \begin{cases} (-1)^k & \text{if } n = p_1 p_2 \cdots p_k \text{ is a product of } k \text{ distinct primes,} \\ 0 & \text{if } n \text{ is not squarefree.} \end{cases}$

Thus the sequence $\{\mu(n)\}$ is $1, -1, -1, 0, -1, 1, -1, 0, 0, 1, \dots$

Recall

 $\mu(n) = \begin{cases} (-1)^k & \text{if } n = p_1 p_2 \cdots p_k \text{ is a product of } k \text{ distinct primes,} \\ 0 & \text{if } n \text{ is not squarefree.} \end{cases}$

Thus the sequence $\{\mu(n)\}$ is $1, -1, -1, 0, -1, 1, -1, 0, 0, 1, \dots$

The **Möbius randomness principle** states that μ is random-like,

Recall

 $\mu(n) = \begin{cases} (-1)^k & \text{if } n = p_1 p_2 \cdots p_k \text{ is a product of } k \text{ distinct primes,} \\ 0 & \text{if } n \text{ is not squarefree.} \end{cases}$

Thus the sequence $\{\mu(n)\}$ is $1, -1, -1, 0, -1, 1, -1, 0, 0, 1, \dots$

The **Möbius randomness principle** states that μ is random-like, i.e. for any bounded, "simple" or "structured" function *F*, we have

$$\sum_{n=1}^{N} \mu(n) F(n) = o(N).$$

Thái Hoàng Lê & Pierre-Yves Bienvenu

Examples:

• If F(n) = 1, then PNT is equivalent to $\sum_{n=1}^{N} \mu(n) = o(N)$ and *RH* is equivalent to

$$\sum_{n=1}^{N} \mu(n) = O_{\epsilon}\left(N^{1/2+\epsilon}\right)$$

for any $\epsilon > 0$.

Examples:

If F(n) = 1, then PNT is equivalent to $\sum_{n=1}^{N} \mu(n) = o(N)$ and *RH* is equivalent to

$$\sum_{n=1}^{N} \mu(n) = O_{\epsilon}\left(N^{1/2+\epsilon}\right)$$

for any $\epsilon > 0$.

If F(n) is periodic with period q, then $\sum_{n=1}^{N} \mu(n)F(n) = o(N)$ is equivalent to PNT in arithmetic progressions.

Examples:

If F(n) = 1, then PNT is equivalent to $\sum_{n=1}^{N} \mu(n) = o(N)$ and *RH* is equivalent to

$$\sum_{n=1}^{N} \mu(n) = O_{\epsilon}\left(N^{1/2+\epsilon}\right)$$

for any $\epsilon > 0$.

- If F(n) is periodic with period q, then $\sum_{n=1}^{N} \mu(n)F(n) = o(N)$ is equivalent to PNT in arithmetic progressions.
- We can formulate the Möbius randomness principle in terms of dynamical systems (Sarnak) or computational complexity (Kalai).

Exponential sums

Davenport/Vinogradov (1937): for any A > 0,

$$\sum_{n=1}^{N} \mu(n) e(n\alpha) \ll_{A} \frac{N}{\log^{A} N}$$

uniformly in $\alpha \in \mathbf{R}/\mathbf{Z}$. Here $e(x) = e^{2\pi i x}$. The implied constant is ineffective.

4 A N

Davenport/Vinogradov (1937): for any A > 0,

$$\sum_{n=1}^{N} \mu(n) \boldsymbol{e}(n\alpha) \ll_{\boldsymbol{A}} \frac{\boldsymbol{N}}{\log^{\boldsymbol{A}} \boldsymbol{N}}$$

uniformly in $\alpha \in \mathbf{R}/\mathbf{Z}$. Here $e(x) = e^{2\pi i x}$. The implied constant is ineffective.

Baker-Harman (1991), Montgomery-Vaughan (unpublished): Assuming GRH, we have

$$\sum_{n=1}^{N} \mu(n) e(n\alpha) \ll_{\epsilon} N^{3/4+\epsilon}$$

uniformly in $\alpha \in \mathbf{R}/\mathbf{Z}$, for any $\epsilon > \mathbf{0}$.

Since

$$\int_0^1 \left| \sum_{n=1}^N \mu(n) \boldsymbol{e}(n\alpha) \right|^2 d\alpha = \sum_{n=1}^N |\mu(n)|^2 \gg N,$$

we cannot do better than $N^{1/2}$.

æ

Thái Hoàng Lê & Pierre-Yves Bienvenu

イロト イヨト イヨト イヨト

Since

$$\int_0^1 \left| \sum_{n=1}^N \mu(n) \boldsymbol{e}(n\alpha) \right|^2 d\alpha = \sum_{n=1}^N |\mu(n)|^2 \gg N,$$

we cannot do better than $N^{1/2}$.

Green-Tao (2008, 2012): If F(n) is a nilsequence, then for any A > 0,

$$\sum_{n=1}^{N} \mu(n) F(n) \ll_{A} \frac{N}{\log^{A} N}$$

Since

$$\int_0^1 \left| \sum_{n=1}^N \mu(n) \boldsymbol{e}(n\alpha) \right|^2 d\alpha = \sum_{n=1}^N |\mu(n)|^2 \gg N,$$

we cannot do better than $N^{1/2}$.

Green-Tao (2008, 2012): If F(n) is a nilsequence, then for any A > 0,

$$\sum_{n=1}^{N} \mu(n) F(n) \ll_{\mathcal{A}} \frac{N}{\log^{A} N}.$$

Nilsequences include $F(n) = e(\alpha n^2 + \beta n)$ and $F(n) = e(\lfloor n\alpha \rfloor \beta n)$.

Let \mathbf{F}_q be the finite field on q elements. It has been known since Dedekind-Weber (1882) that $\mathbf{F}_q[t]$ is similar to **Z** in many aspects. For example, both are unique factorization domains.

Function field analogy

Let \mathbf{F}_q be the finite field on q elements. It has been known since Dedekind-Weber (1882) that $\mathbf{F}_q[t]$ is similar to **Z** in many aspects. For example, both are unique factorization domains.

For $f \in \mathbf{F}_q[t]$, define

$$\mu(f) = \begin{cases} (-1)^k & \text{if } f = cP_1P_2\cdots P_k, P_i \text{ distinct monic irreducibles,} \\ c \in \mathbf{F}_q^{\times}, \\ 0 & \text{if } f \text{ is not squarefree.} \end{cases}$$

Let \mathbf{F}_q be the finite field on q elements. It has been known since Dedekind-Weber (1882) that $\mathbf{F}_q[t]$ is similar to **Z** in many aspects. For example, both are unique factorization domains.

For $f \in \mathbf{F}_q[t]$, define

$$\mu(f) = \begin{cases} (-1)^k & \text{if } f = cP_1P_2\cdots P_k, P_i \text{ distinct monic irreducibles,} \\ c \in \mathbf{F}_q^{\times}, \\ 0 & \text{if } f \text{ is not squarefree.} \end{cases}$$

RH is true in $\mathbf{F}_q[t]$: for $n \ge 2$,

$$\sum_{\substack{\deg f=n,\\f \text{ monic}}} \mu(f) = \mathbf{0}.$$

Thái Hoàng Lê & Pierre-Yves Bienvenu

Let \mathbf{F}_q be the finite field on q elements. It has been known since Dedekind-Weber (1882) that $\mathbf{F}_q[t]$ is similar to **Z** in many aspects. For example, both are unique factorization domains.

For $f \in \mathbf{F}_q[t]$, define

$$\mu(f) = \begin{cases} (-1)^k & \text{if } f = cP_1P_2\cdots P_k, P_i \text{ distinct monic irreducibles,} \\ c \in \mathbf{F}_q^{\times}, \\ 0 & \text{if } f \text{ is not squarefree.} \end{cases}$$

RH is true in $\mathbf{F}_q[t]$: for $n \ge 2$,

$$\sum_{\substack{\deg f=n,\\f \text{ monic}}} \mu(f) = \mathbf{0}.$$

Furthermore, GRH is true in $\mathbf{F}_q[t]$ (Weil 1948).

Fix $e_q : \mathbf{F}_q \to \{z \in \mathbf{C} : |z| = 1\}$ to be a nontrivial additive character of \mathbf{F}_q , i.e. $e_q(x + y) = e_q(x)e_q(y)$ for any $x, y \in \mathbf{F}_q$.

Fix $e_q : \mathbf{F}_q \to \{z \in \mathbf{C} : |z| = 1\}$ to be a nontrivial additive character of \mathbf{F}_q , i.e. $e_q(x + y) = e_q(x)e_q(y)$ for any $x, y \in \mathbf{F}_q$.

Problem. Let $k \ge 1$ and $Q \in \mathbf{F}_q[x_0, x_1, \dots, x_{n-1}]$ be a polynomial of degree k. Show that

d

$$\sum_{egf < n} \mu(f) e_q(Q(f)) = o_{q,k}(q^n)$$

uniformly in Q of degree k. Here Q(f) is Q evaluated at the coefficients of f.

Fix $e_q : \mathbf{F}_q \to \{z \in \mathbf{C} : |z| = 1\}$ to be a nontrivial additive character of \mathbf{F}_q , i.e. $e_q(x + y) = e_q(x)e_q(y)$ for any $x, y \in \mathbf{F}_q$.

Problem. Let $k \ge 1$ and $Q \in \mathbf{F}_q[x_0, x_1, \dots, x_{n-1}]$ be a polynomial of degree k. Show that

$$\sum_{\mathsf{eg}\,f < n} \mu(f) \boldsymbol{e}_q(\boldsymbol{Q}(f)) = \boldsymbol{o}_{q,k}(\boldsymbol{q}^n)$$

uniformly in Q of degree k. Here Q(f) is Q evaluated at the coefficients of f.

Since we have GRH, we may expect $O_q(q^{c_k n})$ for some constant $c_k < 1$, or even $O_{q,k,\epsilon}(q^{(1/2+\epsilon)n})$.

d

< 回 > < 回 > < 回 >

For any $\epsilon > 0$, we have

$$\sum_{\deg f < n} \mu(f) \boldsymbol{e}_q(\boldsymbol{L}(f)) \ll_{\epsilon,q} q^{(3/4+\epsilon)n}$$

uniformly in linear forms $L \in \mathbf{F}_q[x_0, \ldots, x_{n-1}]$.

크

Thái Hoàng Lê & Pierre-Yves Bienvenu

.

____ ▶

For any $\epsilon > 0$, we have

$$\sum_{\deg f < n} \mu(f) \boldsymbol{e}_q(\boldsymbol{L}(f)) \ll_{\epsilon,q} q^{(3/4+\epsilon)n}$$

uniformly in linear forms $L \in \mathbf{F}_q[x_0, \ldots, x_{n-1}]$.

크

Thái Hoàng Lê & Pierre-Yves Bienvenu

.

____ ▶

For any $\epsilon > 0$, we have

$$\sum_{\deg f < n} \mu(f) \boldsymbol{e}_q(\boldsymbol{L}(f)) \ll_{\epsilon,q} q^{(3/4+\epsilon)n}$$

uniformly in linear forms $L \in \mathbf{F}_q[x_0, \dots, x_{n-1}]$.

Recall Baker-Harman and Montgomery-Vaughan's bound in ${\bf Z}$ (under GRH)

$$\sum_{n=1}^{N} \mu(n) e(\alpha n) \ll N^{3/4+\epsilon}.$$

Thái Hoàng Lê & Pierre-Yves Bienvenu

For any $\epsilon > 0$, we have

$$\sum_{\deg f < n} \mu(f) \boldsymbol{e}_q(\boldsymbol{L}(f)) \ll_{\epsilon,q} q^{(3/4+\epsilon)n}$$

uniformly in linear forms $L \in \mathbf{F}_q[x_0, \ldots, x_{n-1}]$.

Recall Baker-Harman and Montgomery-Vaughan's bound in ${\bf Z}$ (under GRH)

$$\sum_{n=1}^{N} \mu(n) e(\alpha n) \ll N^{3/4+\epsilon}.$$

Our argument is different from the proof in Z in some respects.

18/24

• • • • • • • • • • • •

Suppose q is odd. There exists an absolute constant c (c = 1/161 will do) such that

$$\sum_{e \in f < n} \mu(f) e_q(Q(f)) \ll_q q^{n - n^c}$$

uniformly in quadratic polynomials $Q \in \mathbf{F}_q[x_0, \ldots, x_{n-1}]$.

Suppose q is odd. There exists an absolute constant c (c = 1/161 will do) such that

$$\sum_{e \in f < n} \mu(f) e_q(Q(f)) \ll_q q^{n - n^c}$$

uniformly in quadratic polynomials $Q \in \mathbf{F}_q[x_0, \ldots, x_{n-1}]$.

Suppose q is odd. There exists an absolute constant c (c = 1/161 will do) such that

$$\sum_{e \in f < n} \mu(f) e_q(Q(f)) \ll_q q^{n-n^c}.$$

uniformly in quadratic polynomials $Q \in \mathbf{F}_q[x_0, \ldots, x_{n-1}]$.

This is better than what is known in Z for nilsequences of step 2:

$$\sum_{n=1}^{N} \mu(n) F(n) \ll_{F,A} \frac{N}{\log^{A} N}$$

for any A > 0.

The classical circle method deals with exponential sums like

$$\sum_{n=1}^{N} \mu(n) e(\alpha n).$$

To estimate such sums we need to distinguish two cases.

• α is close to a rational with small denominator (α is in the *major arcs*): use our knowledge about the distribution of primes in arithmetic progressions.

The classical circle method deals with exponential sums like

$$\sum_{n=1}^{N} \mu(n) e(\alpha n).$$

To estimate such sums we need to distinguish two cases.

- α is close to a rational with small denominator (α is in the *major arcs*): use our knowledge about the distribution of primes in arithmetic progressions.
- α is not in the major arcs (α is in the *minor arcs*): use combinatorial machinery (Vaughan's identity, Vinogradov's Type I/Type II sums) and Cauchy-Schwarz.

20/24

In the case of

$$\sum_{\deg f < n} \mu(f) e_q(\Phi(f)),$$

where $\Phi(x) = x^T M x$ and *M* is a symmetric matrix, the major arcs and minor arcs correspond to low rank and high rank matrices *M*. This is because

$$\left|\sum_{x\in \mathbf{F}_q^n} e_q(x^T M x)\right| \leq q^{n-\operatorname{rank}(M)/2}$$

We want to show that

$$\left|\sum_{\deg f < n} \mu(f) \boldsymbol{e}_q(\Phi(f))\right| \leq \delta q^n$$

where $\delta = q^{-n^c}$.

2

Thái Hoàng Lê & Pierre-Yves Bienvenu

< 17 ▶

We want to show that

$$\left|\sum_{\deg f < n} \mu(f) \boldsymbol{e}_q(\Phi(f))\right| \leq \delta q^n$$

where $\delta = q^{-n^c}$.

If rank(M) is small, we can reduce our problem to the linear case.

Thái Hoàng Lê & Pierre-Yves Bienvenu

A bilinear Bogolyubov theorem

We want to show that

$$\left|\sum_{\deg f < n} \mu(f) e_q(\Phi(f))\right| \leq \delta q^n$$

where $\delta = q^{-n^c}$.

If $\operatorname{rank}(M)$ is small, we can reduce our problem to the linear case.

Suppose $\left|\sum_{\deg f < n} \mu(f) e_q(\Phi(f))\right| \ge \delta q^n$. We will show that rank(M) is small, which is a contradiction.

After using Vaughan's identity, Vinogradov's Type I/Type II sums, Cauchy-Schwarz and some combinatorial reasoning, we find that for some $n \ll k \le n$, the set of pairs

 $P_{s} := \{(a,b) : a, b \in G_{k+1} \times G_{k+1} : \text{rank } M_{a,b} \leq s\}$

is large (has size $q^{-O(n^c)}q^{2k+2}$) for some $s = O(n^c)$.

After using Vaughan's identity, Vinogradov's Type I/Type II sums, Cauchy-Schwarz and some combinatorial reasoning, we find that for some $n \ll k \le n$, the set of pairs

$$P_{s} := \{(a, b) : a, b \in G_{k+1} \times G_{k+1} : \operatorname{rank} M_{a, b} \leq s\}$$

is large (has size $q^{-O(n^c)}q^{2k+2}$) for some $s = O(n^c)$.

Here $G_m = \{f : \deg f < m\},\$

$$M_{a,b} = L_a^T M L_b + L_b^T M L_a$$

and L_a is the matrix of the map $G_{n-k} \rightarrow G_n$, $f \mapsto af$.
We know

$$P_{s} := \{(a, b) : a, b \in G_{k+1} \times G_{k+1} : \operatorname{rank} M_{a,b} \leq s\}$$

is large, where $M_{a,b} = L_a^T M L_b + L_b^T M L_a$. Want to show that rank *M* is small.

We know

$$P_{s} := \{(a, b) : a, b \in G_{k+1} \times G_{k+1} : \text{rank } M_{a,b} \leq s\}$$

is large, where $M_{a,b} = L_a^T M L_b + L_b^T M L_a$. Want to show that rank *M* is small.

If rank $M_{a,b}$, rank $M_{a',b} \leq s$, then rank $M_{a-a',b} = \text{rank} (M_{a,b} - M_{a',b}) \leq 2s$. Similarly for the second coordinate.

We know

$$P_{s} := \{(a,b) : a, b \in G_{k+1} \times G_{k+1} : \text{rank } M_{a,b} \leq s\}$$

is large, where $M_{a,b} = L_a^T M L_b + L_b^T M L_a$. Want to show that rank *M* is small.

If rank $M_{a,b}$, rank $M_{a',b} \leq s$, then rank $M_{a-a',b} = \text{rank} (M_{a,b} - M_{a',b}) \leq 2s$. Similarly for the second coordinate.

By repeatedly applying the operations ϕ_h and ϕ_v on P_s , the bilinear Bogolyubov theorem implies that P_{2^9s} contains a bilinear structure. By exploiting this, we can show that *M* has low rank, as desired.