
A bilinear Bogolyubov theorem, with applications

Thái Hoàng Lê1 & Pierre-Yves Bienvenu2

1University of Mississippi

2Institut Camille Jordan

November 11, 2018

Thái Hoàng Lê & Pierre-Yves Bienvenu A bilinear Bogolyubov theorem MS Discrete Workshop 2018 1 / 24



Part I: A bilinear Bogolyubov
theorem
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Subspaces in difference sets

If A ⊂ X , then the density of A in X is |A||X | .

If A ⊂ Fn
p has density α > 0, then A− A should contain a large

subspace.
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Green 2005, Sanders 2010: If A ⊂ Fn
2 has density α > 0, then A− A

contains a subspace of dimension Ω(αn).

However, finite codimension (i.e. dimension n − c(α)) is impossible.

Ruzsa 1991, Green 2005: The largest subspace guaranteed to be in
A− A cannot have codimension c(α)

√
n (i.e. dimension n − c(α)

√
n).
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Bogolyubov’s theorem

The more sumsets we have, the larger subspace we can find.

Theorem (Bogolyubov 1939)
If A ⊂ Fn

p has density α > 0, then A + A− A− A contains a subspace
of codimension c(α).

Bogolyubov proved for A ⊂ Z, with subspaces replaced by Bohr
sets.
Bogolyubov’s proof gives c(α) = O

( 1
α2

)
.

Sanders 2010: c(α) = O
(

log4 1
α

)
.

If A is a subspace of density α, then codim(A) = logp
1
α and

A + A− A− A = A. Thus we cannot do better than O
(
log 1

α

)
.
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We are interested in structures arising from subsets A ⊂ Fn
p × Fn

p of
density α > 0.

Define

φhA = {(x1 − x2, y) : (x1, y), (x2, y) ∈ A},
φv A = {(x , y1 − y2) : (x , y1), (x , y2) ∈ A}.

For a sequence w1,w2, . . . ,wk of h’s and v ’s, φw1w2···wk denotes
φw1 ◦ φw2 · · · ◦ φwk .
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A bilinear Bogolyubov theorem

Theorem (Bienvenu-L. 2017, Gowers-Milićević 2017)
If A ⊂ Fn

p × Fn
p has density α > 0, then φhhvvhh(A) contains a set

{(x , y) ∈W1 ×W2 : Q1(x , y) = . . . = Qr (x , y) = 0}

where

W1 ⊂ Fn
p is a subspace of codimension r1,

W2 ⊂ Fn
p is a subspace of codimension r2,

Q1, . . . ,Qr are bilinear forms: W1 ×W2 → Fp,
and max(r1, r2, r) ≤ c(α).

Recall Bogolyubov’s theorem: if A ⊂ Fn
p has density α, then

A + A− A− A contains a subspace of codimension r ′ ≤ c′(α) (= zero
set of r ′ linear forms).
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Quantitative bounds

φhhvvhh(A) ⊃ {(x , y) ∈W1 ×W2 : Q1(x , y) = . . . = Qr (x , y) = 0}

W1 ⊂ Fn
p is a subspace of codimension r1,

W2 ⊂ Fn
p is a subspace of codimension r2,

Q1, . . . ,Qr are bilinear forms: W1 ×W2 → Fp.

Gowers-Milićević: max(r1, r2, r) = O
(

exp
(

exp
(

logO(1) 1
α

)))
.

Bienvenu-L.: max(r1, r) = O(logO(1) 1
α), and

r2 = O
(

exp
(

exp
(

exp
(

logO(1) 1
α

))))
.
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Gowers-Milićević: max(r1, r2, r) = O
(

exp
(

exp
(

logO(1) 1
α

)))
.

Bienvenu-L.: max(r1, r) = O(logO(1) 1
α),

and

r2 = O
(

exp
(

exp
(

exp
(

logO(1) 1
α

))))
.

Thái Hoàng Lê & Pierre-Yves Bienvenu A bilinear Bogolyubov theorem MS Discrete Workshop 2018 8 / 24



Quantitative bounds

φhhvvhh(A) ⊃ {(x , y) ∈W1 ×W2 : Q1(x , y) = . . . = Qr (x , y) = 0}

W1 ⊂ Fn
p is a subspace of codimension r1,

W2 ⊂ Fn
p is a subspace of codimension r2,

Q1, . . . ,Qr are bilinear forms: W1 ×W2 → Fp.
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Motivated by Sanders’ bound r ′ = O(log4 1
α), and since the roles of r1

and r2 are symmetric, it is natural to conjecture.

Conjecture (Bienvenu-L. 2017)
There exists a sequence w1w2 . . .wk of length O(1) such that

max(r1, r2, r) = O(logO(1) 1
α

).

Simple examples show that we cannot do better than this.

Theorem (Hosseini-Lovett 2018)
The conjecture is true for the sequence hvvhvvvhh, and

max(r1, r2, r) = O(log80 1
α

).
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Part II: Applications

Thái Hoàng Lê & Pierre-Yves Bienvenu A bilinear Bogolyubov theorem MS Discrete Workshop 2018 10 / 24



Gowers and Milićević used a variant of the bilinear Bogolyubov
theorem to prove a quantitative bound for the inverse theorem for the
U4-norm (first proved by Bergelson, Tao and Ziegler using qualitative
methods).

We used the bilinear Bogolyubov theorem to prove an instance of the
Möbius randomness principle in function fields.
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The Möbius randomness principle

Recall

µ(n) =

{
(−1)k if n = p1p2 · · · pk is a product of k distinct primes,
0 if n is not squarefree.

Thus the sequence {µ(n)} is 1,−1,−1,0,−1,1,−1,0,0,1, . . ..

The Möbius randomness principle states that µ is random-like, i.e.
for any bounded, “simple” or “structured” function F , we have

N∑
n=1

µ(n)F (n) = o(N).
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Examples:

1 If F (n) = 1, then PNT is equivalent to
∑N

n=1 µ(n) = o(N) and RH
is equivalent to

N∑
n=1

µ(n) = Oε

(
N1/2+ε

)
for any ε > 0.

2 If F (n) is periodic with period q, then
∑N

n=1 µ(n)F (n) = o(N) is
equivalent to PNT in arithmetic progressions.

3 We can formulate the Möbius randomness principle in terms of
dynamical systems (Sarnak) or computational complexity (Kalai).
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Exponential sums

Davenport/Vinogradov (1937): for any A > 0,

N∑
n=1

µ(n)e(nα)�A
N

logA N

uniformly in α ∈ R/Z. Here e(x) = e2πix . The implied constant is
ineffective.

Baker-Harman (1991), Montgomery-Vaughan (unpublished):
Assuming GRH, we have

N∑
n=1

µ(n)e(nα)�ε N3/4+ε

uniformly in α ∈ R/Z, for any ε > 0.
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Since ∫ 1

0

∣∣∣∣∣
N∑

n=1

µ(n)e(nα)

∣∣∣∣∣
2

dα =
N∑

n=1

|µ(n)|2 � N,

we cannot do better than N1/2.

Green-Tao (2008, 2012): If F (n) is a nilsequence, then for any A > 0,

N∑
n=1

µ(n)F (n)�A
N

logA N
.

Nilsequences include F (n) = e
(
αn2 + βn

)
and F (n) = e (bnαcβn).
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Function field analogy

Let Fq be the finite field on q elements. It has been known since
Dedekind-Weber (1882) that Fq[t ] is similar to Z in many aspects. For
example, both are unique factorization domains.

For f ∈ Fq[t ], define

µ(f ) =


(−1)k if f = cP1P2 · · ·Pk , Pi distinct monic irreducibles,

c ∈ Fq
×,

0 if f is not squarefree.

RH is true in Fq[t ]: for n ≥ 2,∑
deg f=n,
f monic

µ(f ) = 0.

Furthermore, GRH is true in Fq[t ] (Weil 1948).
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Fix eq : Fq → {z ∈ C : |z| = 1} to be a nontrivial additive character of
Fq, i.e. eq(x + y) = eq(x)eq(y) for any x , y ∈ Fq.

Problem. Let k ≥ 1 and Q ∈ Fq[x0, x1, . . . , xn−1] be a polynomial of
degree k . Show that ∑

deg f<n

µ(f )eq(Q(f )) = oq,k (qn)

uniformly in Q of degree k . Here Q(f ) is Q evaluated at the coefficients
of f .

Since we have GRH, we may expect Oq(qck n) for some constant
ck < 1, or even Oq,k ,ε(q(1/2+ε)n).
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Our results

Theorem (k = 1)
For any ε > 0, we have∑

deg f<n

µ(f )eq(L(f ))�ε,q q(3/4+ε)n

uniformly in linear forms L ∈ Fq[x0, . . . , xn−1].

Recall Baker-Harman and Montgomery-Vaughan’s bound in Z (under
GRH)

N∑
n=1

µ(n)e(αn)� N3/4+ε.

Our argument is different from the proof in Z in some respects.
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Theorem (k = 2)
Suppose q is odd. There exists an absolute constant c (c = 1/161 will
do) such that ∑

deg f<n

µ(f )eq(Q(f ))�q qn−nc
.

uniformly in quadratic polynomials Q ∈ Fq[x0, . . . , xn−1].

This is better than what is known in Z for nilsequences of step 2:

N∑
n=1

µ(n)F (n)�F ,A
N

logA N

for any A > 0.
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The circle method

The classical circle method deals with exponential sums like

N∑
n=1

µ(n)e(αn).

To estimate such sums we need to distinguish two cases.

α is close to a rational with small denominator (α is in the major
arcs): use our knowledge about the distribution of primes in
arithmetic progressions.

α is not in the major arcs (α is in the minor arcs): use
combinatorial machinery (Vaughan’s identity, Vinogradov’s Type
I/Type II sums) and Cauchy-Schwarz.
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In the case of ∑
deg f<n

µ(f )eq(Φ(f )),

where Φ(x) = xT Mx and M is a symmetric matrix, the major arcs and
minor arcs correspond to low rank and high rank matrices M. This is
because ∣∣∣∣∣∣

∑
x∈Fn

q

eq(xT Mx)

∣∣∣∣∣∣ ≤ qn−rank(M)/2.
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We want to show that ∣∣∣∣∣∣
∑

deg f<n

µ(f )eq(Φ(f ))

∣∣∣∣∣∣ ≤ δqn

where δ = q−nc
.

If rank(M) is small, we can reduce our problem to the linear case.

Suppose
∣∣∣∑deg f<n µ(f )eq(Φ(f ))

∣∣∣ ≥ δqn. We will show that rank(M) is
small, which is a contradiction.
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After using Vaughan’s identity, Vinogradov’s Type I/Type II sums,
Cauchy-Schwarz and some combinatorial reasoning, we find that for
some n� k ≤ n, the set of pairs

Ps := {(a,b) : a,b ∈ Gk+1 ×Gk+1 : rank Ma,b ≤ s}

is large (has size q−O(nc)q2k+2) for some s = O(nc).

Here Gm = {f : deg f < m},

Ma,b = LT
a MLb + LT

b MLa

and La is the matrix of the map Gn−k → Gn, f 7→ af .
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We know

Ps := {(a,b) : a,b ∈ Gk+1 ×Gk+1 : rank Ma,b ≤ s}

is large, where Ma,b = LT
a MLb + LT

b MLa. Want to show that rank M is
small.

If rank Ma,b, rank Ma′,b ≤ s, then rank Ma−a′,b = rank (Ma,b−Ma′,b) ≤ 2s.
Similarly for the second coordinate.

By repeatedly applying the operations φh and φv on Ps, the bilinear
Bogolyubov theorem implies that P29s contains a bilinear structure. By
exploiting this, we can show that M has low rank, as desired.
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