# A q-analogue and a symmetric function analogue of a result by Carlitz, Scoville and Vaughan

### Yifei Li

Washington University in St. Louis

November 10, 2018

### Carlitz, Scoville, and Vaughan's result

Put 
$$f(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{n! n!}$$
 and  $\frac{1}{f(z)} = \sum_{n=0}^{\infty} \omega_n \frac{z^n}{n! n!}$ .  
It follows that  $\sum_{k=0}^n (-1)^k \binom{n}{k}^2 \omega_k = 0$ .

The Bessel function  $J_0(z)$  is essentially  $f(z^2)$  and  $\omega_k$ 's are the the coefficients of the reciprocal Bessel function.

Given  $\sigma \in S_n$ , a permutation of [n] = 1, 2, ..., n, a number  $i \in [n-1]$  is called an *ascent* of  $\sigma$  if  $\sigma(i) < \sigma(i+1)$ .

### Carlitz, Scoville, and Vaughan's result

Put 
$$f(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{n!n!}$$
 and  $\frac{1}{f(z)} = \sum_{n=0}^{\infty} \omega_n \frac{z^n}{n!n!}$ .  
It follows that  $\sum_{k=0}^n (-1)^k \binom{n}{k}^2 \omega_k = 0$ .

The Bessel function  $J_0(z)$  is essentially  $f(z^2)$  and  $\omega_k$ 's are the the coefficients of the reciprocal Bessel function.

Given  $\sigma \in S_n$ , a permutation of [n] = 1, 2, ..., n, a number  $i \in [n-1]$  is called an *ascent* of  $\sigma$  if  $\sigma(i) < \sigma(i+1)$ .

#### C-S-V result

Carlitz, Scoville and Vaughan proved that the number  $\omega_k$  is the number of pairs of permutations of  $S_k$  with no common ascent.

## Carlitz, Scoville, and Vaughan's result

Put 
$$f(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{n!n!}$$
 and  $\frac{1}{f(z)} = \sum_{n=0}^{\infty} \omega_n \frac{z^n}{n!n!}$ .  
It follows that  $\sum_{k=0}^n (-1)^k {n \choose k}^2 \omega_k = 0$ .

### C-S-V result

Carlitz, Scoville and Vaughan proved that the number  $\omega_k$  is the number of pairs of permutations of  $S_k$  with no common ascent.

- For example,  $\omega_2 = 3$ : (12, 21), (21, 12), (21, 21).
- Carlitz, Scoville and Vaughan's result provided a combinatorial interpretation of the coefficient ω<sub>k</sub> in the reciprocal Bessel function.

#### Definition of Segre Products of Posets

Let  $f : P \longrightarrow S$  and  $g : Q \longrightarrow S$  be poset maps. Let  $P \circ_{f,g} Q$  be the induced subposet of the product poset  $P \times Q$  consisting of the pairs  $(p,q) \in P \times Q$  such that f(p) = g(q). Let  $S = \mathbb{N}$ . When Pis a pure poset with rank function  $f = \rho$ ,  $P \circ_{\rho,g} Q$  is the Segre product of P and Q with respect to g, and we denote it by  $P \circ_g Q$ .

- Let  $B_n$  be the subset lattice ordered by inclusion. The q-analogue poset of  $B_n$  is  $B_n(q)$ , which consists of all subspaces of an n-dimensional vector space over  $\mathbb{F}_q$ , ordered by inclusion.
- Segre product poset  $B_n \circ_{\rho} B_n$ :  $\{(a, b) \in B_n \times B_n \text{ and } \rho(a) = \rho(b)\}$
- Segre product poset  $B_n(q) \circ_{\rho} B_n(q)$

# The subspace lattice $B_2(2)$

- An *edge labeling* is a map  $\lambda : \mathcal{E}(P) \longrightarrow \Lambda$ , where  $\Lambda$  is a poset.
- A labeling of B<sub>2</sub>(2):



- A maximal chain c is then associated with a word λ(c). A chain c is *increasing* if λ(c) is strictly increasing and *decreasing* if λ(c) is weakly decreasing.
- The left most chain of  $B_2(2)$  is increasing with a label 12 and the other two chains are decreasing.

# The subspace lattice $B_2(2)$

• An EL-labeling of  $B_2(2)$ :



#### Definition of EL-Labeling

An edge labeling  $\lambda$  of a poset *P* is called an *EL-labeling* (Edge Lexicographical) if for every interval [x, y] in *P*,

- **(**) there is a unique increasing maximal chain c in [x, y], and
- the word λ(c) lexicographically precedes λ(c') for all other maximal chains c' in [x, y].

The Segre product poset  $B_2(2) \circ_{\rho} B_2(2)$ 

• An EL-labeling of  $B_2(2) \circ_{\rho} B_2(2)$ :



- The left most chain of B<sub>2</sub>(2) ∘<sub>ρ</sub> B<sub>2</sub>(2) is increasing with a label (12, 12).
- The labels of decreasing chains in B<sub>n</sub>(q) ∘<sub>ρ</sub> B<sub>n</sub>(q) are pairs of permutations (σ, ω) ∈ S<sub>n</sub> × S<sub>n</sub> with no common ascent. Denote the set of all such pairs by D<sub>n</sub>. e.g. The second chain has label (12, 21).

### A few more definitions

- $[n]_q = q^{n-1} + q^{n-2} + ... + 1$  is the *q*-analogue of the natural number *n*
- $[n]_q! = [n]_q[n-1]_q...[2]_q[1]_q$ • The q-analogue of  $\binom{n}{k}$  is  $\begin{bmatrix}n\\k\end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}.$
- For a permutation  $\sigma \in S_n$ , the *inversion statistic* is defined by

 $inv(\sigma) := |\{(i,j) : 1 \le i < j \le n \text{ and } \sigma(i) > \sigma(j)\}|.$ 

e.g.  $inv(312) = |\{(1,2), (1,3)\}| = 2$ 

# q-analogue to C-S-V result

For a permutation  $\sigma \in S_n$ , the *inversion statistic* is defined by

$$inv(\sigma) := |\{(i,j) : 1 \le i < j \le n \text{ and } \sigma(i) > \sigma(j)\}|.$$

**Notation:** Let  $\mathcal{D}_n$  be the set of all pairs of permutations  $(\sigma, \omega) \in \mathcal{S}_n \times \mathcal{S}_n$  with no common ascent.

#### Theorem 1 (L.): a *q*-analogue to C-S-V result

Let  $P_n(q)$  be the proper part of the Segre product poset  $B_n(q) \circ_{\rho} B_n(q)$ . Let  $W_n(q)$  be the total number of decreasing maximal chains of  $P_n(q)$ . Then

$$\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}_{q}^{2}W_{i}(q)=0$$

and  $W_i(q) = \sum_{(\sigma,\omega)\in\mathcal{D}_n} q^{inv(\sigma)+inv(\omega)}$ .

# q-analogue to C-S-V result

#### Theorem 1 (L.): a q-analogue to C-S-V result

Let  $P_n(q)$  be the proper part of the Segre product poset  $B_n(q) \circ_{\rho} B_n(q)$ . Let  $W_n(q)$  be the total number of decreasing maximal chains of  $P_n(q)$ . Then

$$\sum_{i=0}^{n} (-1)^{i} {n \brack i}_{q}^{2} W_{i}(q) = 0$$
 (1)

and 
$$W_i(q) = \sum_{(\sigma,\omega)\in\mathcal{D}_n} q^{inv(\sigma)+inv(\omega)}$$
.

• Let 
$$F(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{[n]_q! [n]_q!}$$
. The function  $F\left(\left(\frac{z}{2(1-q)}\right)^2\right)$  is  
the *q*-Bessel function  $J_0^{(1)}(z;q)$ .  
• Equation (1) implies that  $W_n(q)$  satisfies  
 $\frac{1}{F(z)} = \sum_{n=0}^{\infty} W_n(q) \frac{z^n}{[n]_q! [n]_q!}$ .

Yifei Li

In fact, W<sub>n</sub>(q) is the Euler characteristic of B<sub>n</sub>(q) ∘<sub>ρ</sub> B<sub>n</sub>(q) up to a sign.

The coefficients  $W_n(q)$  of the reciprocal *q*-Bessel function is the absolute value of Euler characteristic of  $B_n(q) \circ_{\rho} B_n(q)$ , which counts the number of decreasing maximal chains of the Segre product poset  $B_n(q) \circ_{\rho} B_n(q)$ .

 We can get C-S-V's result by letting q = 1. Their work included general cases where occurrences of common ascent are allowed. Our proof provides a less technical approach by utilizing Björner and Wachs' work on shellability and poset homology.

# A well-known symmetric function identity

For 
$$n \ge 1$$
,  $\sum_{i=0}^{n} (-1)^{i} e_{i} h_{n-i} = 0$ .

Symmetric functions can be used to describe representations of  $S_n$ .

#### (Frobenius) characteristic map

Let  $\mathcal{R}^n$  be the space of class functions on  $\mathcal{S}_n$  and  $\Lambda^n$  denote the space of degree *n* symmetric functions. The *(Frobenius)* characteristic map  $ch^n$ :  $\mathcal{R}^n \longrightarrow \Lambda^n$  is defined by

$$ch^n(\chi) = \sum_{\mu \vdash n} z_\mu^{-1} \chi_\mu p_\mu,$$

where  $z_{\mu} = \prod i^{m_i} m_i!$  for a partition  $\mu = (1^{m_1} 2^{m_2}...)$  and  $\chi_{\mu}$  is the value of  $\chi$  on the class  $\mu$ .

# A well-known symmetric function identity

For 
$$n \ge 1$$
,  

$$\sum_{i=0}^{n} (-1)^{i} e_{i} h_{n-i} = 0.$$
(2)

**Notations:**  $\mathcal{R} := \bigoplus_n \mathcal{R}^n$ ,  $\Lambda := \bigoplus_n \Lambda^n$  is the ring of symmetric functions, and  $ch := \bigoplus_n ch^n$ ,  $ch : \mathcal{R} \longrightarrow \Lambda$ , is a homomorphism of rings.

Let  $\overline{B}_i$  be the proper part of  $B_i$ . The elementary symmetric function  $e_i$  is  $ch(H_{i-2}(\overline{B}_i))$ , the (Frobenius) characteristic of the representation of  $S_i$  on the top homology of  $\overline{B}_i$ .

Our analogue to equation (2) will give the  $S_n \times S_n$  version of this identity.

## The product Frobenius characteristic map

We defined the product Frobenius characteristic map to help understand representations on  $S_n \times S_n$ . Consider two sets of variables  $x = (x_1, x_2, ...)$  and  $y = (y_1, y_2, ...)$ .

#### Definition

Let  $\chi$  be a class function on  $S_m \times S_n$ . The *product Frobenius* characteristic map  $ch : \mathcal{R} \times \mathcal{R} \longrightarrow \Lambda(x) \times \Lambda(y)$  is defined as:

$$ch(\chi) = \sum_{(\mu,\lambda)\vdash(m,n)} z_{\mu}^{-1} z_{\lambda}^{-1} \chi_{(\mu,\lambda)} p_{\mu}(x) p_{\lambda}(y),$$

where  $\chi(\mu, \lambda)$  is the value of  $\chi$  on the class  $(\mu, \lambda)$ .

The class  $(\mu, \lambda)$  is indexed by a partition  $\mu$  of m and a partition  $\lambda$  of n that tell us the cycle shapes of elements of  $S_m$  and  $S_n$  respectively.

# Our analogue to $\sum_{i=0}^{n} (-1)^{i} e_{i} h_{n-i} = 0$

• Just like the usual characteristic map, the product Frobenius characteristic map is a homomorphism of rings as well.

#### Theorem 2 (L.): a symmetric function analogue

For the subset lattice  $B_n$  with rank function  $\rho$ , let  $P_n$  be the proper part of the Segre product poset  $B_n \circ_{\rho} B_n$ . The action of  $S_n \times S_n$ induces a representation on the reduced top homology of  $P_n$ . Let  $ch(\widetilde{H}_{n-2}(P_n))$  be the product Frobenius characteristic of this representation. Then

$$\sum_{i=0}^{n} (-1)^{i} ch(\widetilde{H}_{i-2}(P_{i}))h_{n-i}(x)h_{n-i}(y) = 0.$$
(3)

The product Frobenius characteristic  $ch(\widetilde{H}_{n-2}(P_n))$  is a symmetric function in two sets of variables  $x = (x_1, x_2, ...)$  and  $y = (y_1, y_2, ...)$ .

### Definition of ps(f)

The stable principal specialization  $ps : \Lambda \longrightarrow \mathbb{Q}[q]$  of a symmetric function f is defined by

$$ps(f) = f(1, q, q^2, ...).$$

To find  $ps(ch(H_{n-2}(P_n)))$ , we take the stable principal specialization of the function in each set of variables, that is substituting  $(1, q, q^2, ...)$  for both  $(x_1, x_2, ...)$  and  $(y_1, y_2, ...)$ .

By taking the stable principal specialization of the symmetric function analogue, we can recover the polynomial identity  $\sum_{i=0}^{n} (-1)^{i} {n \brack i}_{q}^{2} W_{i}(q) = 0$  in our *q*-analogue and arrive at the following result.

#### Theorem 3 (L.)

Let  $P_n$  be the proper part of the Segre product poset  $B_n \circ_{\rho} B_n$ . Then

$$ps(ch(\widetilde{H}_{n-2}(P_n))) = rac{W_n(q)}{\prod_{i=1}^n (1-q^i)^2},$$

where ch(V) is the product Frobenius characteristic of a  $S_m \times S_n$ -module V.

**Remark:** The Euler characteristic  $W_n(q)$  of  $B_n(q) \circ_{\rho} B_n(q)$  can be obtained from specializing the product Frobenius characteristic of the representation of  $S_n \times S_n$  on top homology of  $B_n \circ_{\rho} B_n$ .

### Questions

- Let P<sub>n</sub> be a poset that has an S<sub>n</sub> action. Let P<sub>n</sub>(q) be a q-analogue of P<sub>n</sub>. What properties does P<sub>n</sub> need so that the Euler characteristic of P<sub>n</sub>(q) can be obtained from specializing the Frobenius characteristic of the representation of S<sub>n</sub> on the homology of P<sub>n</sub>.
- In our symmetric function analogue,  $P_i$  denotes the proper part of  $B_i \circ_{\rho} B_i$ . Can  $ch(H_{i-2}(P_i))$  be written explicitly in symmetric functions?
- So Is there any general setting in which our results hold? Can we find similar results on posets other than  $B_n$  and  $B_n(q)$ ?
- Can we find some results for representations of  $S_n \times S_n \times S_n$ on the homology of  $B_n \circ B_n \circ B_n$ ?