A q-analogue and a symmetric function analogue of a result by Carlitz, Scoville and Vaughan

Yifei Li

Washington University in St. Louis
November 10, 2018

Carlitz, Scoville, and Vaughan's result

Put $f(z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{n}}{n!n!}$ and $\frac{1}{f(z)}=\sum_{n=0}^{\infty} \omega_{n} \frac{z^{n}}{n!n!}$.
It follows that $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{2} \omega_{k}=0$.
The Bessel function $J_{0}(z)$ is essentially $f\left(z^{2}\right)$ and ω_{k} 's are the the coefficients of the reciprocal Bessel function.

Given $\sigma \in \mathcal{S}_{n}$, a permutation of $[n]=1,2, \ldots, n$, a number $i \in[n-1]$ is called an ascent of σ if $\sigma(i)<\sigma(i+1)$.

Carlitz, Scoville, and Vaughan's result

Put $f(z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{n}}{n!n!}$ and $\frac{1}{f(z)}=\sum_{n=0}^{\infty} \omega_{n} \frac{z^{n}}{n!n!}$.
It follows that $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{2} \omega_{k}=0$.
The Bessel function $J_{0}(z)$ is essentially $f\left(z^{2}\right)$ and ω_{k} 's are the the coefficients of the reciprocal Bessel function.

Given $\sigma \in \mathcal{S}_{n}$, a permutation of $[n]=1,2, \ldots, n$, a number $i \in[n-1]$ is called an ascent of σ if $\sigma(i)<\sigma(i+1)$.

C-S-V result

Carlitz, Scoville and Vaughan proved that the number ω_{k} is the number of pairs of permutations of \mathcal{S}_{k} with no common ascent.

Carlitz, Scoville, and Vaughan's result

Put $f(z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{n}}{n!n!}$ and $\frac{1}{f(z)}=\sum_{n=0}^{\infty} \omega_{n} \frac{z^{n}}{n!n!}$.
It follows that $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{2} \omega_{k}=0$.

C-S-V result

Carlitz, Scoville and Vaughan proved that the number ω_{k} is the number of pairs of permutations of \mathcal{S}_{k} with no common ascent.

- For example, $\omega_{2}=3:(12,21),(21,12),(21,21)$.
- Carlitz, Scoville and Vaughan's result provided a combinatorial interpretation of the coefficient ω_{k} in the reciprocal Bessel function.

Segre Product Poset

Definition of Segre Products of Posets

Let $f: P \longrightarrow S$ and $g: Q \longrightarrow S$ be poset maps. Let $P \circ_{f, g} Q$ be the induced subposet of the product poset $P \times Q$ consisting of the pairs $(p, q) \in P \times Q$ such that $f(p)=g(q)$. Let $S=\mathbb{N}$. When P is a pure poset with rank function $f=\rho, P \circ_{\rho, g} Q$ is the Segre product of P and Q with respect to g, and we denote it by $P \circ_{g} Q$.

- Let B_{n} be the subset lattice ordered by inclusion. The q-analogue poset of B_{n} is $B_{n}(q)$, which consists of all subspaces of an n-dimensional vector space over \mathbb{F}_{q}, ordered by inclusion.
- Segre product poset $B_{n} \circ_{\rho} B_{n}$: $\left\{(a, b) \in B_{n} \times B_{n}\right.$ and $\left.\rho(a)=\rho(b)\right\}$
- Segre product poset $B_{n}(q) \circ_{\rho} B_{n}(q)$

The subspace lattice $B_{2}(2)$

- An edge labeling is a map $\lambda: \mathcal{E}(P) \longrightarrow \Lambda$, where Λ is a poset.
- A labeling of $B_{2}(2)$:

- A maximal chain c is then associated with a word $\lambda(c)$. A chain c is increasing if $\lambda(c)$ is strictly increasing and decreasing if $\lambda(c)$ is weakly decreasing.
- The left most chain of $B_{2}(2)$ is increasing with a label 12 and the other two chains are decreasing.

The subspace lattice $B_{2}(2)$

- An EL-labeling of $B_{2}(2)$:

Definition of EL-Labeling

An edge labeling λ of a poset P is called an EL-labeling (Edge Lexicographical) if for every interval $[x, y]$ in P,
(1) there is a unique increasing maximal chain c in $[x, y]$, and
(2) the word $\lambda(c)$ lexicographically precedes $\lambda\left(c^{\prime}\right)$ for all other maximal chains c^{\prime} in $[x, y]$.

The Segre product poset $B_{2}(2) \circ_{\rho} B_{2}(2)$

- An EL-labeling of $B_{2}(2) \circ \rho B_{2}(2)$:

- The left most chain of $B_{2}(2) \circ_{\rho} B_{2}(2)$ is increasing with a label $(12,12)$.
- The labels of decreasing chains in $B_{n}(q) \circ_{\rho} B_{n}(q)$ are pairs of permutations $(\sigma, \omega) \in \mathcal{S}_{n} \times \mathcal{S}_{n}$ with no common ascent. Denote the set of all such pairs by \mathcal{D}_{n}. e.g. The second chain has label $(12,21)$.
- $[n]_{q}=q^{n-1}+q^{n-2}+\ldots+1$ is the q-analogue of the natural number n
- $[n]_{q}!=[n]_{q}[n-1]_{q} \ldots[2]_{q}[1]_{q}$
- The q-analogue of $\binom{n}{k}$ is $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}$.
- For a permutation $\sigma \in \mathcal{S}_{n}$, the inversion statistic is defined by

$$
\operatorname{inv}(\sigma):=\mid\{(i, j): 1 \leq i<j \leq n \text { and } \sigma(i)>\sigma(j)\} \mid
$$

e.g. $\operatorname{inv}(312)=|\{(1,2),(1,3)\}|=2$

q-analogue to C-S-V result

For a permutation $\sigma \in \mathcal{S}_{n}$, the inversion statistic is defined by

$$
\operatorname{inv}(\sigma):=\mid\{(i, j): 1 \leq i<j \leq n \text { and } \sigma(i)>\sigma(j)\} \mid .
$$

Notation: Let \mathcal{D}_{n} be the set of all pairs of permutations $(\sigma, \omega) \in \mathcal{S}_{n} \times \mathcal{S}_{n}$ with no common ascent.

Theorem 1 (L.): a q-analogue to C-S-V result

Let $P_{n}(q)$ be the proper part of the Segre product poset $B_{n}(q) \circ_{\rho} B_{n}(q)$. Let $W_{n}(q)$ be the total number of decreasing maximal chains of $P_{n}(q)$. Then

$$
\sum_{i=0}^{n}(-1)^{i}\left[\begin{array}{l}
n \\
i
\end{array}\right]_{q}^{2} W_{i}(q)=0
$$

and $W_{i}(q)=\sum_{(\sigma, \omega) \in \mathcal{D}_{n}} q^{\operatorname{inv}(\sigma)+\operatorname{inv}(\omega)}$.

q-analogue to C-S-V result

Theorem 1 (L.): a q-analogue to C-S-V result

Let $P_{n}(q)$ be the proper part of the Segre product poset $B_{n}(q) \circ_{\rho} B_{n}(q)$. Let $W_{n}(q)$ be the total number of decreasing maximal chains of $P_{n}(q)$. Then

$$
\sum_{i=0}^{n}(-1)^{i}\left[\begin{array}{l}
n \tag{1}\\
i
\end{array}\right]_{q}^{2} W_{i}(q)=0
$$

and $W_{i}(q)=\sum_{(\sigma, \omega) \in \mathcal{D}_{n}} q^{i n v(\sigma)+i n v(\omega)}$.

- Let $F(z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{n}}{[n]_{q}![n]_{q}!}$. The function $F\left(\left(\frac{z}{2(1-q)}\right)^{2}\right)$ is the q-Bessel function $J_{0}^{(1)}(z ; q)$.
- Equation (1) implies that $W_{n}(q)$ satisfies

$$
\frac{1}{F(z)}=\sum_{n=0}^{\infty} W_{n}(q) \frac{z^{n}}{[n]_{q}![n]_{q}!} .
$$

q-analogue to C-S-V result

- In fact, $W_{n}(q)$ is the Euler characteristic of $B_{n}(q) \circ_{\rho} B_{n}(q)$ up to a sign.

The coefficients $W_{n}(q)$ of the reciprocal q-Bessel function is the absolute value of Euler characteristic of $B_{n}(q) \circ_{\rho} B_{n}(q)$, which counts the number of decreasing maximal chains of the Segre product poset $B_{n}(q) \circ_{\rho} B_{n}(q)$.

- We can get C-S-V's result by letting $q=1$. Their work included general cases where occurrences of common ascent are allowed. Our proof provides a less technical approach by utilizing Björner and Wachs' work on shellability and poset homology.

A well-known symmetric function identity

For $n \geq 1, \sum_{i=0}^{n}(-1)^{i} e_{i} h_{n-i}=0$.
Symmetric functions can be used to describe representations of \mathcal{S}_{n}.

(Frobenius) characteristic map

Let \mathcal{R}^{n} be the space of class functions on \mathcal{S}_{n} and Λ^{n} denote the space of degree n symmetric functions. The (Frobenius) characteristic map $\mathrm{ch}^{n}: \mathcal{R}^{n} \longrightarrow \Lambda^{n}$ is defined by

$$
\operatorname{ch}^{n}(\chi)=\sum_{\mu \vdash n} z_{\mu}^{-1} \chi_{\mu} p_{\mu}
$$

where $z_{\mu}=\prod i^{m_{i}} m_{i}$! for a partition $\mu=\left(1^{m_{1}} 2^{m_{2}} \ldots\right)$ and χ_{μ} is the value of χ on the class μ.

A well-known symmetric function identity

For $n \geq 1$,

$$
\begin{equation*}
\sum_{i=0}^{n}(-1)^{i} e_{i} h_{n-i}=0 \tag{2}
\end{equation*}
$$

Notations: $\mathcal{R}:=\oplus_{n} \mathcal{R}^{n}, \Lambda:=\oplus_{n} \Lambda^{n}$ is the ring of symmetric functions, and $c h:=\oplus_{n} c h^{n}, c h: \mathcal{R} \longrightarrow \Lambda$, is a homomorphism of rings.

Let \bar{B}_{i} be the proper part of B_{i}. The elementary symmetric function e_{i} is $c h\left(H_{i-2}\left(\bar{B}_{i}\right)\right)$, the (Frobenius) characteristic of the representation of \mathcal{S}_{i} on the top homology of \bar{B}_{i}.

Our analogue to equation (2) will give the $\mathcal{S}_{n} \times \mathcal{S}_{n}$ version of this identity.

The product Frobenius characteristic map

We defined the product Frobenius characteristic map to help understand representations on $\mathcal{S}_{n} \times \mathcal{S}_{n}$. Consider two sets of variables $x=\left(x_{1}, x_{2}, \ldots\right)$ and $y=\left(y_{1}, y_{2}, \ldots\right)$.

Definition

Let χ be a class function on $\mathcal{S}_{m} \times \mathcal{S}_{n}$. The product Frobenius characteristic map ch: $\mathcal{R} \times \mathcal{R} \longrightarrow \Lambda(x) \times \Lambda(y)$ is defined as:

$$
\operatorname{ch}(\chi)=\sum_{(\mu, \lambda) \vdash(m, n)} z_{\mu}^{-1} z_{\lambda}^{-1} \chi_{(\mu, \lambda)} p_{\mu}(x) p_{\lambda}(y)
$$

where $\chi(\mu, \lambda)$ is the value of χ on the class (μ, λ).
The class (μ, λ) is indexed by a partition μ of m and a partition λ of n that tell us the cycle shapes of elements of \mathcal{S}_{m} and \mathcal{S}_{n} respectively.

Our analogue to $\sum_{i=0}^{n}(-1)^{i} e_{i} h_{n-i}=0$

- Just like the usual characteristic map, the product Frobenius characteristic map is a homomorphism of rings as well.

Theorem 2 (L.): a symmetric function analogue

For the subset lattice B_{n} with rank function ρ, let P_{n} be the proper part of the Segre product poset $B_{n} \circ_{\rho} B_{n}$. The action of $\mathcal{S}_{n} \times \mathcal{S}_{n}$ induces a representation on the reduced top homology of P_{n}. Let $\operatorname{ch}\left(\widetilde{H}_{n-2}\left(P_{n}\right)\right)$ be the product Frobenius characteristic of this representation. Then

$$
\begin{equation*}
\sum_{i=0}^{n}(-1)^{i} \operatorname{ch}\left(\tilde{H}_{i-2}\left(P_{i}\right)\right) h_{n-i}(x) h_{n-i}(y)=0 \tag{3}
\end{equation*}
$$

Stable principal specialization

The product Frobenius characteristic $\operatorname{ch}\left(\widetilde{H}_{n-2}\left(P_{n}\right)\right)$ is a symmetric function in two sets of variables $x=\left(x_{1}, x_{2}, \ldots\right)$ and
$y=\left(y_{1}, y_{2}, \ldots\right)$.

Definition of $p s(f)$

The stable principal specialization $p s: \Lambda \longrightarrow \mathbb{Q}[q]$ of a symmetric function f is defined by

$$
p s(f)=f\left(1, q, q^{2}, \ldots\right)
$$

To find $p s\left(c h\left(\widetilde{H}_{n-2}\left(P_{n}\right)\right)\right)$, we take the stable principal specialization of the function in each set of variables, that is substituting $\left(1, q, q^{2}, \ldots\right)$ for both $\left(x_{1}, x_{2}, \ldots\right)$ and $\left(y_{1}, y_{2}, \ldots\right)$.

The connection between two analogues

By taking the stable principal specialization of the symmetric function analogue, we can recover the polynomial identity $\sum_{i=0}^{n}(-1)^{i}\left[\begin{array}{c}n \\ i\end{array}\right]_{q}^{2} W_{i}(q)=0$ in our q-analogue and arrive at the following result.

Theorem 3 (L.)

Let P_{n} be the proper part of the Segre product poset $B_{n} \circ_{\rho} B_{n}$. Then

$$
p s\left(\operatorname{ch}\left(\widetilde{H}_{n-2}\left(P_{n}\right)\right)\right)=\frac{W_{n}(q)}{\prod_{i=1}^{n}\left(1-q^{i}\right)^{2}},
$$

where $\operatorname{ch}(V)$ is the product Frobenius characteristic of a $\mathcal{S}_{m} \times \mathcal{S}_{n}$-module V.

Remark: The Euler characteristic $W_{n}(q)$ of $B_{n}(q) \circ_{\rho} B_{n}(q)$ can be obtained from specializing the product Frobenius characteristic of the representation of $\mathcal{S}_{n} \times \mathcal{S}_{n}$ on top homology of $B_{n} \circ_{\rho} B_{n}$.

Questions

(1) Let P_{n} be a poset that has an \mathcal{S}_{n} action. Let $P_{n}(q)$ be a q-analogue of P_{n}. What properties does P_{n} need so that the Euler characteristic of $P_{n}(q)$ can be obtained from specializing the Frobenius characteristic of the representation of \mathcal{S}_{n} on the homology of P_{n}.
(2) In our symmetric function analogue, P_{i} denotes the proper part of $B_{i} \circ_{\rho} B_{i}$. Can $\operatorname{ch}\left(\widetilde{H}_{i-2}\left(P_{i}\right)\right)$ be written explicitly in symmetric functions?
(3) Is there any general setting in which our results hold? Can we find similar results on posets other than B_{n} and $B_{n}(q)$?
(9) Can we find some results for representations of $\mathcal{S}_{n} \times \mathcal{S}_{n} \times \mathcal{S}_{n}$ on the homology of $B_{n} \circ B_{n} \circ B_{n}$?

