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For two sets A, B in an abelian group G, we denote
A+tB={atb:acAbec B}
If AcC G, we let
|Al =#{a:ac A}.

By the density of Ain G, we mean %.
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A motivation from analysis

For functions f, g : R — R, the convolution of f and g, in symbole f x g,
is defined as

(Fx9)(x /f g(x—y)d
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For functions f, g : R — R, the convolution of f and g, in symbole f x g,
is defined as

(Fx9)(x /f g(x—y)d

If fis supported on A, g is supported on B, then f x g is supported on
A+ B.
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For functions f, g : R — R, the convolution of f and g, in symbole f x g,

is defined as
EX / f(y dy.

If fis supported on A, g is supported on B, then f x g is supported on
A+ B.

The convolution f % g is in general more smooth than both f and g.
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A motivation from analysis

For functions f, g : R — R, the convolution of f and g, in symbole f x g,

is defined as
EX / f(y ay.

If fis supported on A, g is supported on B, then f x g is supported on
A+ B.

The convolution f % g is in general more smooth than both f and g.

Correspondingly, we expect A + B, and in particular A — A, to contain
nice structures.
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Theorem (Steinhaus 1920)

If A C R has positive Lebesgue measure, then A — A contains an
interval centered at 0.
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Theorem (Steinhaus 1920)

If A C R has positive Lebesgue measure, then A — A contains an
interval centered at 0.

If A C Z has positive upper density, then A — A contains many nice
structures (e.g. long arithmetic progressions (Bourgain), squares
(Furstenberg, Sarkdzy)).
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We are interested in the analogous phenomenon in G := F7 or Fp.
Throughout, we let A be a subset of G with density «.
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We are interested in the analogous phenomenon in G := F7 or Fp.
Throughout, we let A be a subset of G with density «.

Analogous to Steinhaus’ theorem, if & > 0, then A — A should contain
a large subspace.
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Analogous to Steinhaus’ theorem, if « > 0, then A — A should contain
a large subspace.

Proposition
Ifa>1/2thenA— A= G.
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We are interested in the analogous phenomenon in G := F7 or Fp.
Throughout, we let A be a subset of G with density «.

Analogous to Steinhaus’ theorem, if & > 0, then A — A should contain
a large subspace.

Proposition
Ifa>1/2thenA— A= G.

Let x be arbitrary in G. Then A and x + A both have density > 1/2,
thus An(x+ A) # 2. Thus x e A— A. O
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Theorem (Green 2005, Sanders 2010)

InG=TF},if0 < a<1, then A— A contains a subspace of dimension
Q(an).
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Theorem (Green 2005, Sanders 2010)

InG=TF},if0 < a<1, then A— A contains a subspace of dimension
Q(an).

However, finite codimension (i.e. dimension n — ¢(«)) is impossible.
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Theorem (Green 2005, Sanders 2010)

InG=TF3,if0 <a <1, then A— A contains a subspace of dimension
Q(an).

However, finite codimension (i.e. dimension n — ¢(«)) is impossible.

Theorem (Ruzsa 1991, Green 2005)

In G =TF3, forany 0 < o < 1/2, there exists A C G of density > o such

that A — A does not contain any subspace of codimension c(a)+/n (i.e.
dimension n — c(a)/n).
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Theorem (Bogolyubov 1939)

In G =Tg, if0 <a<1,then A+ A— A— A contains a subspace of
codimension c¢(c).
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Theorem (Bogolyubov 1939)

In G =Tg, if0 <a<1,then A+ A— A— A contains a subspace of
codimension c¢(c).

@ Bogolyubov’s proof gives c(a) = O ().

(0%
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«

@ Sanders 2010: ¢(a) = O <|og4 %)
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Theorem (Bogolyubov 1939)

In G =Tg, if0 <a<1,then A+ A— A— A contains a subspace of
codimension c¢(c).

@ Bogolyubov's proof gives c(a) = O ().
@ Sanders 2010: ¢(a) = O <|og4 %)

It is easy to see that we cannot do better than O (log 1).
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Q: What happens when o = 1/2, or is close to 1/2?
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Q: What happens when o = 1/2, or is close to 1/2?

Theorem (Sanders 2010)

InG="T], ifo > % f, then A — A contains a subspace of
codimension 1.

This is best possible by taking A to be a subspace of codimension 1.
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Q: What happens when o = 1/2, or is close to 1/2?

Theorem (Sanders 2010)

InG=F}, ifa> % -
codimension 1.

f, then A — A contains a subspace of

This is best possible by taking A to be a subspace of codimension 1.

The proof uses McDiarmid’s inequality in probability.
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Q: What happens when o = 1/2, or is close to 1/2?

Theorem (Sanders 2010)

InG=F}, ifa> % -
codimension 1.

f, then A — A contains a subspace of

This is best possible by taking A to be a subspace of codimension 1.
The proof uses McDiarmid’s inequality in probability.

With Lé, we found a simple and elementary proof which also works in
IF5, inspired by a theorem of Wirsing.
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Theorem (Wirsing 1979)

LetAc {1,2,3,4,5,...,2"},H={0}u{£2 :i>0}. Then

(A+H)N[1, 2”]\>]A]+\/>|A|< |A|>.
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Theorem (Wirsing 1979)

LetAc {1,2,3,4,5,...,2"},H={0}u{£2 :i>0}. Then

(A+H)N[,27 > ,AH\fW( |Ar>'

Theorem (Lé-G. 2018)

Let G=Ty, ey,...,en be abasis of F}, H= {0, ey, ..., en}. Then for
any A C G, we have

©) . (. Al
A+ H| > A+ f|A|( ‘G|).
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Theorem (Lé-G. 2018)

Let G =Ty, ey,..., e be abasis of Fj, H = {0, ey,...,en}. Then for
any A C G, we have

o) 4 (1 Al
|A+H]2|A|+\/ﬁ|A|< \G\)'
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Theorem (Lé-G. 2018)

Let G =Ty, ey,..., e be abasis of Fj, H = {0, ey,...,en}. Then for
any A C G, we have

o) 4 (1 Al
|A+H]2|A|+\/ﬁ|A|<1 ‘G‘)

@ The factor v/nis best possible.
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Theorem (Lé-G. 2018)

Let G =Ty, ey,..., e be abasis of Fj, H = {0, ey,...,en}. Then for
any A C G, we have

o) 4 (1 Al
|A+H]2|A|+\/ﬁ|A|<1 ‘G‘)

@ The factor v/nis best possible.
@ Our proof gives ¢(p) = Q(p~2/2). The truth may be Q(p~ 7).
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Theorem (Lé-G. 2018)

Let G =Ty, ey,..., e be abasis of Fj, H = {0, ey,...,en}. Then for
any A C G, we have

c(p) Al
A+ H| 2 A+ =21A (1 - \G\> .

@ The factor v/nis best possible.

@ Our proof gives ¢(p) = Q(p~2/2). The truth may be Q(p~ 7).

@ When p = 2, one can probably deduce the theorem from vertex
isoperimetric inequalities for hypercubes. Harper 1966: among

sets A C {0,1}" of the same size, |A + H| is minimized when A is
a Hamming ball.
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Theorem (Lé-G. 2018)

Let G =Ty, ey,..., e be abasis of Fj, H = {0, ey,...,en}. Then for
any A C G, we have

c(p) Al
A+ H| 2 A+ =21A (1 - \G\> .

@ The factor v/nis best possible.

@ Our proof gives ¢(p) = Q(p~2/2). The truth may be Q(p~ 7).

@ When p = 2, one can probably deduce the theorem from vertex
isoperimetric inequalities for hypercubes. Harper 1966: among
sets A C {0,1}" of the same size, |A + H| is minimized when A is
a Hamming ball.

@ Wirsing’s argument is extremely simple and works in a general
setting.
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Proof of generalized Sanders’ theorem

Theorem (Sanders 2010 (p = 2), Lé-G. (all p))

(G=Tp) Ifa> % ﬁ), then A — A contains a subspace of
codimension 1.

We will show that A — A contains G\ V where V is an affine subspace
of codimension 1.
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Proof of generalized Sanders’ theorem

Theorem (Sanders 2010 (p = 2), Lé-G. (all p))

(G=Tp) Ifa> % ﬁ), then A — A contains a subspace of
codimension 1.

We will show that A — A contains G\ V where V is an affine subspace
of codimension 1. With further work, we can show 0 ¢ V, which
implies generalized Sanders’ theorem.
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Proof of generalized Sanders’ theorem

Theorem (Sanders 2010 (p = 2), Lé-G. (all p))

(G=Tp) Ifa> % ﬁ), then A — A contains a subspace of
codimension 1.

We will show that A — A contains G\ V where V is an affine subspace
of codimension 1. With further work, we can show 0 ¢ V, which
implies generalized Sanders’ theorem.

Equivalently, S := (A — A)¢ is contained in an affine subspace of
codimension 1.
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Goal: if a > § — % then S := (A — A)¢ is contained in an affine
subspace of codimension 1.
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Goal: if a > § — % then S := (A — A)¢ is contained in an affine

subspace of codimension 1.

Suppose this is not true. Let s € S. Then S — s contains n linearly
independent vectors ey,...,e,. Let H={0,ey,...,en}.
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Goal: if a > § — -, then S := (A — A)° is contained in an affine
subspace of codimension 1.

Suppose this is not true. Let s € S. Then S — s contains n linearly
independent vectors ey,...,e,. Let H={0,ey,...,en}.

By definition SN (A— A) = @. Thus (S+ A)N A= @ and
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Goal: if a > § — -, then S := (A — A)° is contained in an affine
subspace of codimension 1.

Suppose this is not true. Let s € S. Then S — s contains n linearly
independent vectors ey,...,e,. Let H={0,ey,...,en}.

By definition SN (A— A) = @. Thus (S+ A)N A= @ and

A IStA Al |HEA o(p)
1> + > >a+a+ —=a(1 —a)
Gt a et g N
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Goal: if a > § — -, then S := (A — A)° is contained in an affine
subspace of codimension 1.

Suppose this is not true. Let s € S. Then S — s contains n linearly
independent vectors ey,...,e,. Let H={0,ey,...,en}.

By definition SN (A— A) = @. Thus (S+ A)N A= @ and

A ISYA A [HEA o(p)
1> + > — + >at+a+ —a(l —a).
Gl 1a et g N

This is a contradiction if a > § — &\/’E’).
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Wirsing’s argument

Theorem (Lé-G. 2018)

Let G=T}, ey,...,en be abasis of F}, H= {0, ey,...,en}. Then for
any A C G, we have

(), (1A
A+ H= 1A+ S2hA (1= ).
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Wirsing’s argument

Theorem (Lé-G. 2018)

Let G=T}, ey,...,en be abasis of F}, H= {0, ey,...,en}. Then for
any A C G, we have

(), (1A
A+ H= 1A+ S2hA (1= ).

Suppose p = 2. We prove by induction on n that for any A C F7,
Hn:={0,eq,€,...,€n}, we have

|A+ Hp| > |A] + ¢l A (1 — >

for some constant c.
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Wirsing’s argument

Theorem (Lé-G. 2018)

Let G=T}, ey,...,en be abasis of F}, H= {0, ey,...,en}. Then for
any A C G, we have

(), (1A
A+ H= 1A+ S2hA (1= ).

Suppose p = 2. We prove by induction on n that for any A C F7,
Hp:={0,ey,€o,...,€n}, we have

|A+ Hp| > |A] + ¢l A (1 — >

for some constant cj,.
n = 1: Easy to see that this is true when ¢; < 2.

Thai Hoang Lé & Zhenchao Ge Subspaces in difference sets in vector spaces Mississippi Discrete Math 13/18



n—1 = n: We partition
A=Ay o {0} A o {1}

where Ay, Ay C F3~ ",
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n—1 = n: We partition
A=Ay o {0} A o {1}
where Ap, A1 C Fg‘1. Two easy observations:

Q@ A+ H,D> Ay @ {0,1}. Therefore, |A+ Hp| > 2|Ao|. Similarly,
|A+ Hp| > 2|Aq].
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n—1 = n: We partition
A=Ay o {0} A o {1}
where Ap, A1 C Fg‘1. Two easy observations:

Q@ A+ H,D> Ay @ {0,1}. Therefore, |A+ Hp| > 2|Ao|. Similarly,
|A+ Hp| > 2|Aq].

Q A+ HyD (Ag+ Hooq) ® {0} U(A1 + Hp_1) & {1}. Therefore,
|A+ Hp| > |Ao + Hp—1] + |A1 4+ Hnp—1].
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n—1 = n: We partition
A=Ay o {0} A o {1}
where Ap, A1 C Fg‘1. Two easy observations:

Q@ A+ H,D> Ay @ {0,1}. Therefore, |A+ Hp| > 2|Ao|. Similarly,
|A+ Hp| > 2|Aq].

Q A+ HyD (Ag+ Hooq) ® {0} U(A1 + Hp_1) & {1}. Therefore,
|A+ Hp| > |Ao + Hp—1] + |A1 4+ Hnp—1].

Case 1: If one of |Ag| and |A4] is significantly larger than the other,
then use Observation 1.
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n—1 = n: We partition
A=Ay o {0} A o {1}
where Ap, A1 C ]Fg‘1. Two easy observations:

Q@ A+ H,D> Ay @ {0,1}. Therefore, |A+ Hp| > 2|Ao|. Similarly,
|A+ Hp| > 2|Aq].

Q A+ HyD (Ag+ Hooq) ® {0} U(A1 + Hp_1) & {1}. Therefore,
|A+ Hp| > |Ao + Hp—1] + |A1 4+ Hnp—1].

Case 1: If one of |Ag| and |A4] is significantly larger than the other,
then use Observation 1.

Case 2: If |Ap| and |A¢| are close, then use Observation 2 and
induction hypothesis.
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Observations:
Q |A+ Hy| > 2max (Aol | A)).
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Observations:
Q |A+ Hy| > 2max (|Aol, |A1]).
Q |A+ Hp| > |Ao + Hn_1| + |A1 + Hn_1].
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Observations:
Q |A+ Hy| > 2max (|Aol, |A1]).
Q |A+ Hp| > |Ao + Hn_1| + |A1 + Hn_1].

Case 1: |Ao| — |A¢| > cnlA| ( - 'zﬂ)

Thai Hoang Lé & Zhenchao Ge Subspaces in difference sets in vector spaces Mississippi Discrete Math 15/18



Observations:
Q |A+ Hy| > 2max (|Aol, |A1]).
Q |A+ Hp| > |Ao+ Hnot| + |A1 + Hn—1l.

Case 1: |A| — |A1] > cilAl ( - gﬂ) Then
|A+ Hn| > 2[Ao| = (|Ao| + |A1]) + (Aol — |A1]) = |A] + (|Ao| — |A1])

and the goal follows.
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Observations:
Q |A+ Hp| > 2max(|Aol, |A1]).
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Observations:
@ A+ Hp| = 2max (| Ao, |A1]).
Q |A+ Hp| > |Ao + Hn1| + |A1 + Hp_4].
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Observations:
@ A+ Hp| = 2max (| Ao, |A1]).
Q |A+ Hp| > |Ao + Hn1| + |A1 + Hp_4].
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Observations:
@ A+ Hp| = 2max (| Ao, |A1]).
Q |A+ Hp| > |Ao + Hn1| + |A1 + Hp_4].

Case 2: 0 < |Ao| — |A1] < cilA ( - @)
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Observations:

Q@ [A+ Hp| > 2max(|Ao|, |Ai]).

Q |A+ Hp| > |Ao + Hn1| + |A1 + Hp_4].
Case 2: 0 < |Ao| — |A1] < cilA ( - @)
Then by induction hypothesis,

A A
At bl = Aol cailAol (1= 5020 )+ 1Al + eoln] (1 gty )
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Observations:

Q@ [A+ Hp| > 2max(|Ao|, |Ai]).

Q |A+ Hp| > |Ao + Hn1| + |A1 + Hp_4].
Case 2: 0 < |Ao| — |A1] < cilA ( - @)
Then by induction hypothesis,

A A
At bl = Aol cailAol (1= 5020 )+ 1Al + eoln] (1 gty )

Cn—
= 1A+ CoalAl = oot (1ol + [Ad]?)

Thai Hoang Lé & Zhenchao Ge Subspaces in difference sets in vector spaces Mississippi Discrete Math 16/18



Observations:
@ A+ Hp| = 2max (| Ao, |A1]).
Q |A+ Hp| > |Ao + Hn1| + |A1 + Hp_4].

Case 2: 0 < |Ao| — |A1] < cilA (1 - @)
Then by induction hypothesis,

A A
At bl = Aol cailAol (1= 5020 )+ 1Al + eoln] (1 gty )

Cn—
= A+ 1Al = oot (Ao + 1 AdP?)

2on—1
1 (1A | (JAol - |A1])?
= |A| + Cnf1 |A| - 2!7—1 < 2 + 2
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Observations:
@ A+ Hp| = 2max (| Ao, |A1]).
Q |A+ Hp| > |Ao + Hn1| + |A1 + Hp_4].

Case 2: 0 < |Ao| — |A1] < cilA (1 - @)
Then by induction hypothesis,

A A
At bl = Aol cailAol (1= 5020 )+ 1Al + eoln] (1 gty )

ot (140f + A4[?)

Cn_ Al? Aol — |A1])?

Al ch
Al + |A (1—2n Cn1 =2 )

v

Thai Hoang Lé & Zhenchao Ge Subspaces in difference sets in vector spaces Mississippi Discrete Math 16/18



Thus the goal follows if ¢,_4 (1 — T) > Cp.
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Thus the goal follows if ¢,y (1~ ) > cy. This is satisfied f

Cn:\/%.
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Thus the goal follows if ¢,y (1~ ) > cy. This is satisfied f

Cn:\/%.

When G = F}, we partition A into p fibers and argue similarly. We also
use Plinnecke’s inequality.
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Thus the goal follows if ¢,y (1~ ) > cy. This is satisfied f
Cn = \/%

When G = F}, we partition A into p fibers and argue similarly. We also
use Plinnecke’s inequality.

Theorem (Plinnecke 1970, Rusza 1989, Petridis 2011)
Let A, B be finite subsets of a commutative group G. Define

X+ iB]
,u,—mln{ X X CA.

Then the sequence { M,V i} is decreasing.
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Thank Youl!
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