
Subspaces in difference sets

Thái Hoàng Lê & Zhenchao Ge

University of Mississippi

Nov. 11, 2018

Mississippi Discrete Math Workshop 2018

Thái Hoàng Lê & Zhenchao Ge Subspaces in difference sets in vector spaces Mississippi Discrete Math 1 / 18



For two sets A,B in an abelian group G, we denote

A± B = {a± b : a ∈ A,b ∈ B}.

If A ⊂ G, we let
|A| = #{a : a ∈ A}.

By the density of A in G, we mean |A||G| .
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A motivation from analysis

For functions f ,g : R→ R, the convolution of f and g, in symbole f ∗ g,
is defined as

(f ∗ g)(x) =

∫
R

f (y)g(x − y) dy .

If f is supported on A, g is supported on B, then f ∗ g is supported on
A + B.

The convolution f ∗ g is in general more smooth than both f and g.

Correspondingly, we expect A + B, and in particular A− A, to contain
nice structures.
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Theorem (Steinhaus 1920)
If A ⊂ R has positive Lebesgue measure, then A− A contains an
interval centered at 0.

If A ⊂ Z has positive upper density, then A− A contains many nice
structures (e.g. long arithmetic progressions (Bourgain), squares
(Furstenberg, Sárközy)).
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We are interested in the analogous phenomenon in G := Fn
2 or Fn

p.
Throughout, we let A be a subset of G with density α.

Analogous to Steinhaus’ theorem, if α > 0, then A− A should contain
a large subspace.

Proposition
If α > 1/2 then A− A = G.

Proof.
Let x be arbitrary in G. Then A and x + A both have density > 1/2,
thus A ∩ (x + A) 6= ∅. Thus x ∈ A− A.
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Theorem (Green 2005, Sanders 2010)
In G = Fn

2, if 0 < α < 1, then A− A contains a subspace of dimension
Ω(αn).

However, finite codimension (i.e. dimension n − c(α)) is impossible.

Theorem (Ruzsa 1991, Green 2005)
In G = Fn

2, for any 0 < α < 1/2, there exists A ⊂ G of density ≥ α such
that A− A does not contain any subspace of codimension c(α)

√
n (i.e.

dimension n − c(α)
√

n).
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Theorem (Bogolyubov 1939)
In G = Fn

p, if 0 < α < 1, then A + A− A− A contains a subspace of
codimension c(α).

Bogolyubov’s proof gives c(α) = O
( 1
α2

)
.

Sanders 2010: c(α) = O
(

log4 1
α

)
.

It is easy to see that we cannot do better than O
(
log 1

α

)
.
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Q: What happens when α = 1/2, or is close to 1/2?

Theorem (Sanders 2010)

In G = Fn
2, if α > 1

2 −
c√
n , then A− A contains a subspace of

codimension 1.

This is best possible by taking A to be a subspace of codimension 1.

The proof uses McDiarmid’s inequality in probability.

With Lê, we found a simple and elementary proof which also works in
Fn

p, inspired by a theorem of Wirsing.
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Theorem (Wirsing 1979)

Let A ⊂ {1,2,3,4,5, . . . ,2n},H = {0} ∪ {±2i : i ≥ 0}. Then

|(A + H) ∩ [1,2n]| ≥ |A|+
√

2
n
|A|
(

1− |A|
2n

)
.

Theorem (Lê-G. 2018)
Let G = Fn

p, e1, . . . ,en be a basis of Fn
p, H = {0,e1, . . . ,en}. Then for

any A ⊂ G, we have

|A + H| ≥ |A|+ c(p)√
n
|A|
(

1− |A|
|G|

)
.
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Theorem (Lê-G. 2018)
Let G = Fn

p, e1, . . . ,en be a basis of Fn
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any A ⊂ G, we have

|A + H| ≥ |A|+ c(p)√
n
|A|
(

1− |A|
|G|

)
.

The factor
√

n is best possible.
Our proof gives c(p) = Ω(p−3/2). The truth may be Ω(p−1).
When p = 2, one can probably deduce the theorem from vertex
isoperimetric inequalities for hypercubes. Harper 1966: among
sets A ⊂ {0,1}n of the same size, |A + H| is minimized when A is
a Hamming ball.
Wirsing’s argument is extremely simple and works in a general
setting.
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Proof of generalized Sanders’ theorem

Theorem (Sanders 2010 (p = 2), Lê-G. (all p))

(G = Fn
p) If α > 1

2 −
c′(p)√

n , then A− A contains a subspace of
codimension 1.

We will show that A− A contains G \ V where V is an affine subspace
of codimension 1.

With further work, we can show 0 6∈ V , which
implies generalized Sanders’ theorem.

Equivalently, S := (A− A)c is contained in an affine subspace of
codimension 1.
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Goal: if α > 1
2 −

c√
n , then S := (A− A)c is contained in an affine

subspace of codimension 1.

Suppose this is not true. Let s ∈ S. Then S − s contains n linearly
independent vectors e1, . . . ,en. Let H = {0,e1, . . . ,en}.

By definition S ∩ (A− A) = ∅. Thus (S + A) ∩ A = ∅ and

1 ≥ |A|
|G|

+
|S + A|
|G|

≥ |A|
|G|

+
|H + A|
|G|

≥ α + α +
c(p)√

n
α(1− α).

This is a contradiction if α > 1
2 −

c′(p)√
n .
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1 ≥ |A|
|G|

+
|S + A|
|G|

≥ |A|
|G|

+
|H + A|
|G|

≥ α + α +
c(p)√

n
α(1− α).

This is a contradiction if α > 1
2 −

c′(p)√
n .
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Wirsing’s argument

Theorem (Lê-G. 2018)
Let G = Fn

p, e1, . . . ,en be a basis of Fn
p, H = {0,e1, . . . ,en}. Then for

any A ⊂ G, we have

|A + H| ≥ |A|+ c(p)√
n
|A|
(

1− |A|
|G|

)
.

Suppose p = 2. We prove by induction on n that for any A ⊂ Fn
2,

Hn := {0,e1,e2, . . . ,en}, we have

|A + Hn| ≥ |A|+ cn|A|
(

1− |A|
2n

)
for some constant cn.

n = 1: Easy to see that this is true when c1 ≤ 2.
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n − 1⇒ n: We partition

A = A0 ⊕ {0}
⋃

A1 ⊕ {1}

where A0,A1 ⊂ Fn−1
2 .

Two easy observations:

1 A + Hn ⊃ A0 ⊕ {0,1}. Therefore, |A + Hn| ≥ 2|A0|. Similarly,
|A + Hn| ≥ 2|A1|.

2 A + Hn ⊃ (A0 + Hn−1)⊕ {0}
⋃

(A1 + Hn−1)⊕ {1}. Therefore,
|A + Hn| ≥ |A0 + Hn−1|+ |A1 + Hn−1|.

Case 1: If one of |A0| and |A1| is significantly larger than the other,
then use Observation 1.

Case 2: If |A0| and |A1| are close, then use Observation 2 and
induction hypothesis.
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Observations:
1 |A + Hn| ≥ 2 max (|A0|, |A1|).

2 |A + Hn| ≥ |A0 + Hn−1|+ |A1 + Hn−1|.

Case 1: |A0| − |A1| ≥ cn|A|
(

1− |A|2n

)
. Then

|A + Hn| ≥ 2|A0| = (|A0|+ |A1|) + (|A0| − |A1|) = |A|+ (|A0| − |A1|)

and the goal follows.
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2 |A + Hn| ≥ |A0 + Hn−1|+ |A1 + Hn−1|.

Case 2: 0 ≤ |A0| − |A1| ≤ cn|A|
(

1− |A|2n

)
.

Then by induction hypothesis,

|A + Hn| ≥ |A0|+ cn−1|A0|
(

1− |A0|
2n−1

)
+ |A1|+ cn−1|A1|

(
1− |A1|

2n−1

)
= |A|+ cn−1|A| −

cn−1

2n−1

(
|A0|2 + |A1|2

)
= |A|+ cn−1|A| −

cn−1

2n−1

(
|A|2

2
+

(|A0| − |A1|)2

2

)
≥ |A|+ |A|

(
1− |A|

2n

)(
cn−1 −

c2
n
4

)
.
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Thus the goal follows if cn−1

(
1− c2

n
4

)
≥ cn.

This is satisfied if

cn =
√

2
n .

When G = Fn
p, we partition A into p fibers and argue similarly. We also

use Plünnecke’s inequality.

Theorem (Plünnecke 1970, Rusza 1989, Petridis 2011)
Let A,B be finite subsets of a commutative group G. Define

µi = min

{
|X + iB|
|X |

: X ⊂ A
}
.

Then the sequence {µ1/i
i } is decreasing.
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Thank You!
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