Subspaces in difference sets

Thái Hoàng Lê & Zhenchao Ge

University of Mississippi

Nov. 11, 2018

Mississippi Discrete Math Workshop 2018

For two sets A, B in an abelian group G, we denote

$$A \pm B = \{a \pm b : a \in A, b \in B\}.$$

If $A \subset G$, we let

$$|\boldsymbol{A}| = \#\{\boldsymbol{a} : \boldsymbol{a} \in \boldsymbol{A}\}.$$

By the *density* of A in G, we mean $\frac{|A|}{|G|}$.

A = > 4

$$(f*g)(x)=\int_{\mathbb{R}}f(y)g(x-y)\,dy.$$

$$(f*g)(x) = \int_{\mathbb{R}} f(y)g(x-y)\,dy.$$

If f is supported on A, g is supported on B, then f * g is supported on A + B.

(4) (3) (4) (4) (4)

$$(f*g)(x) = \int_{\mathbb{R}} f(y)g(x-y)\,dy.$$

If f is supported on A, g is supported on B, then f * g is supported on A + B.

The convolution f * g is in general more smooth than both f and g.

(4) (3) (4) (4) (4)

$$(f*g)(x) = \int_{\mathbb{R}} f(y)g(x-y)\,dy.$$

If *f* is supported on *A*, *g* is supported on *B*, then f * g is supported on A + B.

The convolution f * g is in general more smooth than both f and g.

Correspondingly, we expect A + B, and in particular A - A, to contain nice structures.

Theorem (Steinhaus 1920)

If $A \subset \mathbb{R}$ has positive Lebesgue measure, then A - A contains an interval centered at 0.

Theorem (Steinhaus 1920)

If $A \subset \mathbb{R}$ has positive Lebesgue measure, then A - A contains an interval centered at 0.

Theorem (Steinhaus 1920)

If $A \subset \mathbb{R}$ has positive Lebesgue measure, then A - A contains an interval centered at 0.

If $A \subset \mathbb{Z}$ has positive upper density, then A - A contains many nice structures (e.g. long arithmetic progressions (Bourgain), squares (Furstenberg, Sárközy)).

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Analogous to Steinhaus' theorem, if $\alpha > 0$, then A - A should contain a large subspace.

Analogous to Steinhaus' theorem, if $\alpha > 0$, then A - A should contain a large subspace.

Proposition

If $\alpha > 1/2$ then A - A = G.

A D b 4 A b

Analogous to Steinhaus' theorem, if $\alpha > 0$, then A - A should contain a large subspace.

Proposition

If $\alpha > 1/2$ then A - A = G.

A D b 4 A b

Analogous to Steinhaus' theorem, if $\alpha > 0$, then A - A should contain a large subspace.

PropositionIf $\alpha > 1/2$ then A - A = G.

Proof.

Let *x* be arbitrary in *G*. Then *A* and x + A both have density > 1/2, thus $A \cap (x + A) \neq \emptyset$. Thus $x \in A - A$.

In $G = \mathbb{F}_2^n$, if $0 < \alpha < 1$, then A - A contains a subspace of dimension $\Omega(\alpha n)$.

< 6 b

(4) (3) (4) (4) (4)

In $G = \mathbb{F}_2^n$, if $0 < \alpha < 1$, then A - A contains a subspace of dimension $\Omega(\alpha n)$.

< 6 b

(4) (3) (4) (4) (4)

In $G = \mathbb{F}_2^n$, if $0 < \alpha < 1$, then A - A contains a subspace of dimension $\Omega(\alpha n)$.

However, finite codimension (i.e. dimension $n - c(\alpha)$) is impossible.

• = • •

In $G = \mathbb{F}_2^n$, if $0 < \alpha < 1$, then A - A contains a subspace of dimension $\Omega(\alpha n)$.

However, finite codimension (i.e. dimension $n - c(\alpha)$) is impossible.

Theorem (Ruzsa 1991, Green 2005)

In $G = \mathbb{F}_2^n$, for any $0 < \alpha < 1/2$, there exists $A \subset G$ of density $\geq \alpha$ such that A - A does not contain any subspace of codimension $c(\alpha)\sqrt{n}$ (i.e. dimension $n - c(\alpha)\sqrt{n}$).

In $G = \mathbb{F}_p^n$, if $0 < \alpha < 1$, then A + A - A - A contains a subspace of codimension $c(\alpha)$.

< 6 k

(4) (3) (4) (4) (4)

In $G = \mathbb{F}_p^n$, if $0 < \alpha < 1$, then A + A - A - A contains a subspace of codimension $c(\alpha)$.

< 6 k

(4) (3) (4) (4) (4)

In $G = \mathbb{F}_p^n$, if $0 < \alpha < 1$, then A + A - A - A contains a subspace of codimension $c(\alpha)$.

• Bogolyubov's proof gives $c(\alpha) = O(\frac{1}{\alpha^2})$.

(4) (5) (4) (5)

In $G = \mathbb{F}_p^n$, if $0 < \alpha < 1$, then A + A - A - A contains a subspace of codimension $c(\alpha)$.

- Bogolyubov's proof gives $c(\alpha) = O(\frac{1}{\alpha^2})$.
- Sanders 2010: $c(\alpha) = O\left(\log^4 \frac{1}{\alpha}\right)$.

In $G = \mathbb{F}_p^n$, if $0 < \alpha < 1$, then A + A - A - A contains a subspace of codimension $c(\alpha)$.

- Bogolyubov's proof gives $c(\alpha) = O(\frac{1}{\alpha^2})$.
- Sanders 2010: $c(\alpha) = O\left(\log^4 \frac{1}{\alpha}\right)$.

In $G = \mathbb{F}_p^n$, if $0 < \alpha < 1$, then A + A - A - A contains a subspace of codimension $c(\alpha)$.

- Bogolyubov's proof gives $c(\alpha) = O(\frac{1}{\alpha^2})$.
- Sanders 2010: $c(\alpha) = O\left(\log^4 \frac{1}{\alpha}\right)$.

It is easy to see that we cannot do better than $O(\log \frac{1}{\alpha})$.

4 1 1 1 4

(a)

Theorem (Sanders 2010)

In $G = \mathbb{F}_2^n$, if $\alpha > \frac{1}{2} - \frac{c}{\sqrt{n}}$, then A - A contains a subspace of codimension 1.

Theorem (Sanders 2010)

In $G = \mathbb{F}_2^n$, if $\alpha > \frac{1}{2} - \frac{c}{\sqrt{n}}$, then A - A contains a subspace of codimension 1.

Theorem (Sanders 2010)

In $G = \mathbb{F}_2^n$, if $\alpha > \frac{1}{2} - \frac{c}{\sqrt{n}}$, then A - A contains a subspace of codimension 1.

This is best possible by taking A to be a subspace of codimension 1.

Theorem (Sanders 2010)

In $G = \mathbb{F}_2^n$, if $\alpha > \frac{1}{2} - \frac{c}{\sqrt{n}}$, then A - A contains a subspace of codimension 1.

This is best possible by taking A to be a subspace of codimension 1.

The proof uses McDiarmid's inequality in probability.

Theorem (Sanders 2010)

In $G = \mathbb{F}_2^n$, if $\alpha > \frac{1}{2} - \frac{c}{\sqrt{n}}$, then A - A contains a subspace of codimension 1.

This is best possible by taking A to be a subspace of codimension 1.

The proof uses McDiarmid's inequality in probability.

With Lê, we found a simple and elementary proof which also works in \mathbb{F}_p^n , inspired by a theorem of Wirsing.

Theorem (Wirsing 1979)

Let $A \subset \{1, 2, 3, 4, 5, \dots, 2^n\}, H = \{0\} \cup \{\pm 2^i : i \ge 0\}$. Then $|(A + H) \cap [1, 2^n]| \ge |A| + \sqrt{\frac{2}{n}}|A| \left(1 - \frac{|A|}{2^n}\right).$

Theorem (Wirsing 1979)

Let
$$A \subset \{1, 2, 3, 4, 5, \dots, 2^n\}, H = \{0\} \cup \{\pm 2^i : i \ge 0\}$$
. Then
 $|(A + H) \cap [1, 2^n]| \ge |A| + \sqrt{\frac{2}{n}}|A| \left(1 - \frac{|A|}{2^n}\right).$

Theorem (Lê-G. 2018)

Let $G = \mathbb{F}_p^n$, e_1, \ldots, e_n be a basis of \mathbb{F}_p^n , $H = \{0, e_1, \ldots, e_n\}$. Then for any $A \subset G$, we have

$$|\mathbf{A} + \mathbf{H}| \ge |\mathbf{A}| + \frac{c(\mathbf{p})}{\sqrt{n}} |\mathbf{A}| \left(1 - \frac{|\mathbf{A}|}{|\mathbf{G}|}\right).$$

Thái Hoàng Lê & Zhenchao Ge Subspaces in difference sets in vector spaces Mississippi Discrete Math 9 / 18

Let $G = \mathbb{F}_p^n$, e_1, \ldots, e_n be a basis of \mathbb{F}_p^n , $H = \{0, e_1, \ldots, e_n\}$. Then for any $A \subset G$, we have

$$|\mathbf{A} + \mathbf{H}| \ge |\mathbf{A}| + \frac{c(\mathbf{p})}{\sqrt{n}} |\mathbf{A}| \left(1 - \frac{|\mathbf{A}|}{|\mathbf{G}|}\right).$$

Let $G = \mathbb{F}_p^n$, e_1, \ldots, e_n be a basis of \mathbb{F}_p^n , $H = \{0, e_1, \ldots, e_n\}$. Then for any $A \subset G$, we have

$$|\mathbf{A} + \mathbf{H}| \ge |\mathbf{A}| + \frac{c(\mathbf{p})}{\sqrt{n}} |\mathbf{A}| \left(1 - \frac{|\mathbf{A}|}{|\mathbf{G}|}\right).$$

• The factor \sqrt{n} is best possible.

Let $G = \mathbb{F}_p^n$, e_1, \ldots, e_n be a basis of \mathbb{F}_p^n , $H = \{0, e_1, \ldots, e_n\}$. Then for any $A \subset G$, we have

$$|\mathbf{A} + \mathbf{H}| \ge |\mathbf{A}| + rac{c(\mathbf{p})}{\sqrt{n}} |\mathbf{A}| \left(1 - rac{|\mathbf{A}|}{|\mathbf{G}|}\right)$$

• The factor \sqrt{n} is best possible.

• Our proof gives $c(p) = \Omega(p^{-3/2})$. The truth may be $\Omega(p^{-1})$.

A D b 4 A b

Let $G = \mathbb{F}_p^n$, e_1, \ldots, e_n be a basis of \mathbb{F}_p^n , $H = \{0, e_1, \ldots, e_n\}$. Then for any $A \subset G$, we have

$$|\boldsymbol{A}+\boldsymbol{H}|\geq |\boldsymbol{A}|+rac{\boldsymbol{c}(\boldsymbol{\mathcal{p}})}{\sqrt{n}}|\boldsymbol{A}|\left(1-rac{|\boldsymbol{A}|}{|\boldsymbol{G}|}
ight)$$

• The factor \sqrt{n} is best possible.

- Our proof gives $c(p) = \Omega(p^{-3/2})$. The truth may be $\Omega(p^{-1})$.
- When p = 2, one can probably deduce the theorem from vertex isoperimetric inequalities for hypercubes. Harper 1966: among sets $A \subset \{0, 1\}^n$ of the same size, |A + H| is minimized when A is a Hamming ball.
Let $G = \mathbb{F}_p^n$, e_1, \ldots, e_n be a basis of \mathbb{F}_p^n , $H = \{0, e_1, \ldots, e_n\}$. Then for any $A \subset G$, we have

$$|\mathbf{A} + \mathbf{H}| \ge |\mathbf{A}| + rac{c(\mathbf{p})}{\sqrt{n}} |\mathbf{A}| \left(1 - rac{|\mathbf{A}|}{|\mathbf{G}|}\right)$$

- The factor \sqrt{n} is best possible.
- Our proof gives $c(p) = \Omega(p^{-3/2})$. The truth may be $\Omega(p^{-1})$.
- When p = 2, one can probably deduce the theorem from vertex isoperimetric inequalities for hypercubes. Harper 1966: among sets $A \subset \{0, 1\}^n$ of the same size, |A + H| is minimized when A is a Hamming ball.
- Wirsing's argument is extremely simple and works in a general setting.

 $(G = \mathbb{F}_p^n)$ If $\alpha > \frac{1}{2} - \frac{c'(p)}{\sqrt{n}}$, then A – A contains a subspace of codimension 1.

We will show that A - A contains $G \setminus V$ where V is an *affine* subspace of codimension 1.

 $(G = \mathbb{F}_p^n)$ If $\alpha > \frac{1}{2} - \frac{c'(p)}{\sqrt{n}}$, then A – A contains a subspace of codimension 1.

We will show that A - A contains $G \setminus V$ where V is an *affine* subspace of codimension 1.

 $(G = \mathbb{F}_p^n)$ If $\alpha > \frac{1}{2} - \frac{c'(p)}{\sqrt{n}}$, then A – A contains a subspace of codimension 1.

We will show that A - A contains $G \setminus V$ where V is an *affine* subspace of codimension 1. With further work, we can show $0 \notin V$, which implies generalized Sanders' theorem.

 $(G = \mathbb{F}_p^n)$ If $\alpha > \frac{1}{2} - \frac{c'(p)}{\sqrt{n}}$, then A – A contains a subspace of codimension 1.

We will show that A - A contains $G \setminus V$ where V is an *affine* subspace of codimension 1. With further work, we can show $0 \notin V$, which implies generalized Sanders' theorem.

Equivalently, $S := (A - A)^c$ is contained in an affine subspace of codimension 1.

伺下 イヨト イヨ

Suppose this is not true. Let $s \in S$. Then S - s contains *n* linearly independent vectors e_1, \ldots, e_n . Let $H = \{0, e_1, \ldots, e_n\}$.

Suppose this is not true. Let $s \in S$. Then S - s contains *n* linearly independent vectors e_1, \ldots, e_n . Let $H = \{0, e_1, \ldots, e_n\}$.

By definition $S \cap (A - A) = \emptyset$. Thus $(S + A) \cap A = \emptyset$ and

4 3 5 4 3 5

Suppose this is not true. Let $s \in S$. Then S - s contains *n* linearly independent vectors e_1, \ldots, e_n . Let $H = \{0, e_1, \ldots, e_n\}$.

By definition $S \cap (A - A) = \emptyset$. Thus $(S + A) \cap A = \emptyset$ and

$$1 \geq \frac{|A|}{|G|} + \frac{|S+A|}{|G|} \geq \frac{|A|}{|G|} + \frac{|H+A|}{|G|} \geq \alpha + \alpha + \frac{c(p)}{\sqrt{n}}\alpha(1-\alpha).$$

4 3 5 4 3 5

Suppose this is not true. Let $s \in S$. Then S - s contains *n* linearly independent vectors e_1, \ldots, e_n . Let $H = \{0, e_1, \ldots, e_n\}$.

By definition $S \cap (A - A) = \emptyset$. Thus $(S + A) \cap A = \emptyset$ and

$$1 \geq \frac{|A|}{|G|} + \frac{|S+A|}{|G|} \geq \frac{|A|}{|G|} + \frac{|H+A|}{|G|} \geq \alpha + \alpha + \frac{c(p)}{\sqrt{n}}\alpha(1-\alpha).$$

This is a contradiction if $\alpha > \frac{1}{2} - \frac{c'(p)}{\sqrt{n}}$.

Let $G = \mathbb{F}_p^n$, e_1, \ldots, e_n be a basis of \mathbb{F}_p^n , $H = \{0, e_1, \ldots, e_n\}$. Then for any $A \subset G$, we have

$$|\mathbf{A} + \mathbf{H}| \ge |\mathbf{A}| + \frac{c(\mathbf{p})}{\sqrt{n}} |\mathbf{A}| \left(1 - \frac{|\mathbf{A}|}{|\mathbf{G}|}\right)$$

Let $G = \mathbb{F}_p^n$, e_1, \ldots, e_n be a basis of \mathbb{F}_p^n , $H = \{0, e_1, \ldots, e_n\}$. Then for any $A \subset G$, we have

$$|\mathbf{A} + \mathbf{H}| \ge |\mathbf{A}| + \frac{c(\mathbf{p})}{\sqrt{n}} |\mathbf{A}| \left(1 - \frac{|\mathbf{A}|}{|\mathbf{G}|}\right)$$

Let $G = \mathbb{F}_p^n$, e_1, \ldots, e_n be a basis of \mathbb{F}_p^n , $H = \{0, e_1, \ldots, e_n\}$. Then for any $A \subset G$, we have

$$|A+H| \geq |A| + rac{c(p)}{\sqrt{n}}|A| \left(1 - rac{|A|}{|G|}
ight)$$

Suppose p = 2. We prove by induction on *n* that for any $A \subset \mathbb{F}_2^n$, $H_n := \{0, e_1, e_2, \dots, e_n\}$, we have

$$|\mathbf{A}+\mathbf{H}_n| \geq |\mathbf{A}| + c_n |\mathbf{A}| \left(1 - \frac{|\mathbf{A}|}{2^n}\right)$$

for some constant c_n .

A B F A B F

A D b 4 A b

Let $G = \mathbb{F}_p^n$, e_1, \ldots, e_n be a basis of \mathbb{F}_p^n , $H = \{0, e_1, \ldots, e_n\}$. Then for any $A \subset G$, we have

$$|A+H| \geq |A| + rac{c(p)}{\sqrt{n}}|A| \left(1 - rac{|A|}{|G|}
ight)$$

Suppose p = 2. We prove by induction on *n* that for any $A \subset \mathbb{F}_2^n$, $H_n := \{0, e_1, e_2, \dots, e_n\}$, we have

$$|\mathbf{A} + \mathbf{H}_n| \ge |\mathbf{A}| + c_n |\mathbf{A}| \left(1 - \frac{|\mathbf{A}|}{2^n}\right)$$

for some constant c_n .

n = 1: Easy to see that this is true when $c_1 \leq 2$.

$$A = A_0 \oplus \{0\} \bigcup A_1 \oplus \{1\}$$

where $A_0, A_1 \subset \mathbb{F}_2^{n-1}$.

イロト イポト イヨト イヨト

э

$$A = A_0 \oplus \{0\} \bigcup A_1 \oplus \{1\}$$

where $A_0, A_1 \subset \mathbb{F}_2^{n-1}$. Two easy observations:

• $A + H_n \supset A_0 \oplus \{0, 1\}$. Therefore, $|A + H_n| \ge 2|A_0|$. Similarly, $|A + H_n| \ge 2|A_1|$.

A B b A B b

$$A = A_0 \oplus \{0\} \bigcup A_1 \oplus \{1\}$$

where $A_0, A_1 \subset \mathbb{F}_2^{n-1}$. Two easy observations:

• $A + H_n \supset A_0 \oplus \{0, 1\}$. Therefore, $|A + H_n| \ge 2|A_0|$. Similarly, $|A + H_n| \ge 2|A_1|$.

② $A + H_n \supset (A_0 + H_{n-1}) \oplus \{0\} \bigcup (A_1 + H_{n-1}) \oplus \{1\}$. Therefore, $|A + H_n| \ge |A_0 + H_{n-1}| + |A_1 + H_{n-1}|.$

4 E N 4 E N

$$A = A_0 \oplus \{0\} \bigcup A_1 \oplus \{1\}$$

where $A_0, A_1 \subset \mathbb{F}_2^{n-1}$. Two easy observations:

• $A + H_n \supset A_0 \oplus \{0, 1\}$. Therefore, $|A + H_n| \ge 2|A_0|$. Similarly, $|A + H_n| \ge 2|A_1|$.

② $A + H_n \supset (A_0 + H_{n-1}) \oplus \{0\} \bigcup (A_1 + H_{n-1}) \oplus \{1\}$. Therefore, $|A + H_n| \ge |A_0 + H_{n-1}| + |A_1 + H_{n-1}|.$

4 E N 4 E N

$$A = A_0 \oplus \{0\} \bigcup A_1 \oplus \{1\}$$

where $A_0, A_1 \subset \mathbb{F}_2^{n-1}$. Two easy observations:

• $A + H_n \supset A_0 \oplus \{0, 1\}$. Therefore, $|A + H_n| \ge 2|A_0|$. Similarly, $|A + H_n| \ge 2|A_1|$.

②
$$A + H_n \supset (A_0 + H_{n-1}) \oplus \{0\} \bigcup (A_1 + H_{n-1}) \oplus \{1\}$$
. Therefore,
 $|A + H_n| \ge |A_0 + H_{n-1}| + |A_1 + H_{n-1}|$.

Case 1: If one of $|A_0|$ and $|A_1|$ is significantly larger than the other, then use Observation 1.

$$A = A_0 \oplus \{0\} \bigcup A_1 \oplus \{1\}$$

where $A_0, A_1 \subset \mathbb{F}_2^{n-1}$. Two easy observations:

• $A + H_n \supset A_0 \oplus \{0, 1\}$. Therefore, $|A + H_n| \ge 2|A_0|$. Similarly, $|A + H_n| \ge 2|A_1|$.

②
$$A + H_n \supset (A_0 + H_{n-1}) \oplus \{0\} \bigcup (A_1 + H_{n-1}) \oplus \{1\}$$
. Therefore,
 $|A + H_n| \ge |A_0 + H_{n-1}| + |A_1 + H_{n-1}|$.

Case 1: If one of $|A_0|$ and $|A_1|$ is significantly larger than the other, then use Observation 1.

Case 2: If $|A_0|$ and $|A_1|$ are close, then use Observation 2 and induction hypothesis.

 $|A + H_n| \geq 2 \max(|A_0|, |A_1|).$

э

- $|A + H_n| \ge 2 \max(|A_0|, |A_1|).$
- $(a + H_n | \ge |A_0 + H_{n-1}| + |A_1 + H_{n-1}|.$

A > + = + + =

- $|A + H_n| \ge 2 \max(|A_0|, |A_1|).$
- $(a + H_n | \ge |A_0 + H_{n-1}| + |A_1 + H_{n-1}|.$

A > + = + + =

•
$$|A + H_n| \ge 2 \max(|A_0|, |A_1|).$$

• $|A + H_n| \ge |A_0 + H_{n-1}| + |A_1 + H_{n-1}|.$

Case 1:
$$|A_0| - |A_1| \ge c_n |A| \left(1 - \frac{|A|}{2^n}\right)$$
.

イロト イヨト イヨト イヨト

æ

Case 1:
$$|A_0| - |A_1| \ge c_n |A| \left(1 - \frac{|A|}{2^n}\right)$$
. Then
 $|A + H_n| \ge 2|A_0| = (|A_0| + |A_1|) + (|A_0| - |A_1|) = |A| + (|A_0| - |A_1|)$

and the goal follows.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

$$|A + H_n| \ge 2 \max(|A_0|, |A_1|).$$

イロト イヨト イヨト イヨト

- $|A + H_n| \ge 2 \max(|A_0|, |A_1|).$
- 2 $|A + H_n| \ge |A_0 + H_{n-1}| + |A_1 + H_{n-1}|.$

э

- $|A + H_n| \ge 2 \max(|A_0|, |A_1|).$
- 2 $|A + H_n| \ge |A_0 + H_{n-1}| + |A_1 + H_{n-1}|.$

э

•
$$|A + H_n| \ge 2 \max(|A_0|, |A_1|).$$

• $|A + H_n| \ge |A_0 + H_{n-1}| + |A_1 + H_{n-1}|.$

Case 2:
$$0 \le |A_0| - |A_1| \le c_n |A| \left(1 - \frac{|A|}{2^n}\right)$$
.

イロト イヨト イヨト イヨト

•
$$|A + H_n| \ge 2 \max(|A_0|, |A_1|).$$

• $|A + H_n| \ge |A_0 + H_{n-1}| + |A_1 + H_{n-1}|.$

Case 2:
$$0 \le |A_0| - |A_1| \le c_n |A| \left(1 - \frac{|A|}{2^n}\right).$$

Then by induction hypothesis,

$$|A + H_n| \geq |A_0| + c_{n-1}|A_0| \left(1 - \frac{|A_0|}{2^{n-1}}\right) + |A_1| + c_{n-1}|A_1| \left(1 - \frac{|A_1|}{2^{n-1}}\right)$$

•
$$|A + H_n| \ge 2 \max(|A_0|, |A_1|).$$

• $|A + H_n| \ge |A_0 + H_{n-1}| + |A_1 + H_{n-1}|.$

Case 2:
$$0 \le |A_0| - |A_1| \le c_n |A| \left(1 - \frac{|A|}{2^n}\right).$$

Then by induction hypothesis,

$$\begin{array}{ll} |A + H_n| &\geq & |A_0| + c_{n-1} |A_0| \left(1 - \frac{|A_0|}{2^{n-1}} \right) + |A_1| + c_{n-1} |A_1| \left(1 - \frac{|A_1|}{2^{n-1}} \right) \\ &= & |A| + c_{n-1} |A| - \frac{c_{n-1}}{2^{n-1}} \left(|A_0|^2 + |A_1|^2 \right) \end{array}$$

•
$$|A + H_n| \ge 2 \max(|A_0|, |A_1|).$$

• $|A + H_n| \ge |A_0 + H_{n-1}| + |A_1 + H_{n-1}|.$

Case 2:
$$0 \le |A_0| - |A_1| \le c_n |A| \left(1 - \frac{|A|}{2^n}\right).$$

Then by induction hypothesis,

$$\begin{aligned} A+H_n| &\geq |A_0|+c_{n-1}|A_0| \left(1-\frac{|A_0|}{2^{n-1}}\right)+|A_1|+c_{n-1}|A_1| \left(1-\frac{|A_1|}{2^{n-1}}\right) \\ &= |A|+c_{n-1}|A|-\frac{c_{n-1}}{2^{n-1}} \left(|A_0|^2+|A_1|^2\right) \\ &= |A|+c_{n-1}|A|-\frac{c_{n-1}}{2^{n-1}} \left(\frac{|A|^2}{2}+\frac{(|A_0|-|A_1|)^2}{2}\right) \end{aligned}$$

< 17 ▶

•
$$|A + H_n| \ge 2 \max(|A_0|, |A_1|).$$

• $|A + H_n| \ge |A_0 + H_{n-1}| + |A_1 + H_{n-1}|.$

Case 2:
$$0 \le |A_0| - |A_1| \le c_n |A| \left(1 - \frac{|A|}{2^n}\right).$$

Then by induction hypothesis,

$$\begin{array}{lll} |A + H_n| & \geq & |A_0| + c_{n-1} |A_0| \left(1 - \frac{|A_0|}{2^{n-1}} \right) + |A_1| + c_{n-1} |A_1| \left(1 - \frac{|A_1|}{2^{n-1}} \right) \\ & = & |A| + c_{n-1} |A| - \frac{c_{n-1}}{2^{n-1}} \left(|A_0|^2 + |A_1|^2 \right) \\ & = & |A| + c_{n-1} |A| - \frac{c_{n-1}}{2^{n-1}} \left(\frac{|A|^2}{2} + \frac{(|A_0| - |A_1|)^2}{2} \right) \\ & \geq & |A| + |A| \left(1 - \frac{|A|}{2^n} \right) \left(c_{n-1} - \frac{c_n^2}{4} \right). \end{array}$$

< 17 ▶

Thus the goal follows if $c_{n-1}\left(1-\frac{c_n^2}{4}\right) \geq c_n$.

(a)

э

Thus the goal follows if $c_{n-1}\left(1-\frac{c_n^2}{4}\right) \ge c_n$. This is satisfied if $c_n = \sqrt{\frac{2}{n}}$.

Thus the goal follows if $c_{n-1}\left(1-\frac{c_n^2}{4}\right) \ge c_n$. This is satisfied if $c_n = \sqrt{\frac{2}{n}}$.

When $G = \mathbb{F}_p^n$, we partition A into p fibers and argue similarly. We also use Plünnecke's inequality.

.
Thus the goal follows if $c_{n-1}\left(1-\frac{c_n^2}{4}\right) \ge c_n$. This is satisfied if $c_n = \sqrt{\frac{2}{n}}$.

When $G = \mathbb{F}_{p}^{n}$, we partition *A* into *p* fibers and argue similarly. We also use Plünnecke's inequality.

Theorem (Plünnecke 1970, Rusza 1989, Petridis 2011)

Let A, B be finite subsets of a commutative group G. Define

$$\mu_i = \min\left\{\frac{|X+iB|}{|X|} : X \subset A\right\}.$$

Then the sequence $\{\mu_i^{1/i}\}$ is decreasing.

Thank You!

イロト イヨト イヨト イヨト

æ