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What are Geometric Presentations?

The following are minimally dependent sets.

• Two dots on a point.

• Three (not co-pointer) dots on a line.

• Four (not co-linear) dots on a plane.

• Five (not co-planer) dots in space.

• etc.
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What is a Matroid?

e1

e2

e3
e4

e5

e6

Circuits: minimal dependent sets
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What is a Matroid?

e1

e2

e3
e4

e5

e6

Hyperplanes: set H such that r(H ∪
e) = r(M) for all e ∈ E (M)−H but
r(H) = r(M)−1.
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What is a Matroid?

e1

e2

e3
e4

e5

e6

Cocircuits: The complement of a hy-
perplane, or a minimal set whose re-
moval decreases the rank of the ma-
troid.
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What is a Matroid?

e1

e2

e3
e4

e5

e6

Basis: a maximal independent set.
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Theorem (Wheels and Whirls
Theorem (Tutte) )

Let M be a non-empty 3-connected
matroid. Then every element of M
is in a 3-circuit and a 3-cocircuit if
and only if M has rank at least
three and is isomorphic to a wheel
or a whirl.
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Spikes and Swirls

For r ≥ 3, a rank r spike is a matroid on 2r elements, where
E (M) = L1tL2tL2t . . .tLr and each Li ∪Lj is a 4-circuit and
4-cocircuit.

1 3 5
e4

e5

f1 f2
f3

f4

f51 3 5
7

9

2 4 6
8

10

A rank r ≥ 3 swirl is constructed as follows.
• Take a basis {b1,b2,b3, . . . ,br}.
• Add 2-element independent sets {ei , fi} such that
{ei , fi} ⊆ cl(bi ,bi+1).
• Delete {b1,b2,b3, . . . ,br}.
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Cyclic (t−1, t)-property

M has the cyclic (t−1, t)-property if there is a cyclic ordering σ of E (M)
such that every t−1 consecutive elements of σ is contained in a
t-element circuit and a t-element cocircuit.

• A direct sum of copies of M(C2) is (1,2)-cyclic.

• Wheels and whirls are (2,3)-cyclic.

• Spikes and swirls are (3,4)-cyclic.

• Motivating Question: Are these the only (3,4)-cyclic matroids?
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Notation

M is a (t−1, t)-cyclic matroid of size n.

• Xi = {i , i + 1, . . . , i + t−2}
a t−1 interval starting at i

• Ci is a fixed circuit containing Xi

• C ∗i is a fixed cocircuit containing Xi
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Main Result

Theorem (Preview)

Let M be a matroid and suppose that σ = (e1,e2, . . . ,en) is a cyclic
(t−1, t)-ordering of E (M), where n is sufficiently large, and t ≥ 3.

• Then n is even,

• and there is a unique t-element circuit and a unique t-element
cocircuit containing Xi .

Furthermore, we can state precisely what these circuits and cocircuits are.
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Helpful Tool

A circuit and a cocircuit of a matroid cannot intersect in exactly one
element.

H C ∗

C
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Lemma 1

Suppose that ci and ci+2t−4 are far away.
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Let n ≥ 4t−6. For all i ∈ [n],

i either Ci ⊆ σ[i , i+3t−6] or Ci+2t−4 ⊆ σ[i , i+3t−6], and

ii either C ∗i ⊆ σ[i , i+3t−6] or C ∗i+2t−4 6⊆ σ[i , i+3t−6].
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Lemma 2

Lemma (2)

Let n ≥ 4t−6. For all i ∈ [n],

Ci ,C
∗
i ⊆ σ[i−(2t−4), i+3(t−2)].
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Proof of Main Theorem

Lemma (3)

If n ≥ 6t−10, then
Ci ⊆ σ [i −1, i + t−1] and Ci ⊆ σ [i −1, i + t−1].

Corollary (4)

If n ≥ 6t−10, then there is only one t-circuit containing Xi and only one
t-cocircuit containing Xi .

Corollary (5)

If n ≥ 6t−10, Ci = σ [i , i + t−1], and j ≡ i (mod 2) then
Cj = σ [j , j + t−1] and Cj+1 ⊆ σ [j , j + t−1].
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Theorem [1]

Theorem

Suppose that n ≥ 6t−10 and t ≥ 3. Then n is even and, for all i ∈ [n],
there is a unique t-element circuit and a unique t-element cocircuit
containing Xi}. Moreover, up to parity,
• If t is odd, then

• {ei ,ei+1, . . . ,ei+t−1} is a t-element circuit, when i is odd, and a
t-element cocircuit, when i is even.

• If t is even, then:
• {ei ,ei+1, . . . ,ei+t−1} is a t-element circuit circuit and cocircuit, when i

is odd.
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Well behaved (t-1,t)-cyclic matroids

We say that M is well behaved if (n ≥ t−1, and) there exists a cyclic
ordering σ = (e1,e2, . . . ,en) of E (M) such that, for all odd i ∈ {1,2, . . . ,n},
either

• {ei ,ei+1, . . . ,ei+t−1} is a t-element circuit and {ei+1,ei+2, . . . ,ei+t} is
a t-element cocircuit, or

• {ei ,ei+1, . . . ,ei+t−1} is a t-element circuit and t-element cocircuit.

Lemma (Lemma 6)

Let t ≥ 1 and let M be a t-cyclic matroid. Then |E (M)| ≥ 2t−2.
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Size Lemma

Lemma (6)

Let t ≥ 1 and let M be a well behaved (t−1, t)-cyclic matroid. Then
|E (M)| ≥ 2t−2.
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Construction

• Let M be well behaved a (t−1, t)-cyclic matroid with
n ≥ 2(t + 2)−2.

• M ′ is obtained by freely adding an element, f , to M to get M1 and
then contracting f from M1 to get M ′.
• {ej+1,ej+2, . . . ,ej+t+2} is a cocircuit.
• Let M ′1 be the matroid obtained by freely coextending M ′ by an

element, g , and then deleting g .
• By duality, we get the right (t + 2)-circuits.
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Construction

• Let M be well behaved a (t−1, t)-cyclic matroid with
n ≥ 2(t + 2)−2.
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Conjecture

• Let M be well behaved (t−1, t)-cyclic matroid with n ≥ 2(t + 2)−2.

• M ′ is obtained by not necessarily freely, adding an element, f , to M
to get M1 and then contracting f from M1 to get M ′.

• Let M ′1 be the matroid obtained by not necessarily freely,
coextending M ′ by an element, g , and then deleting g .

• Then N has a well behaved-(t + 2)-cyclic ordering.

Conjecture

Let t be an integer exceeding two, and let M be a t-cyclic matroid.

• If t is even, then M can be obtained from a spike or a swirl by a
sequence of inflations.

• If t is odd, then M can be obtained from a wheel or whirl by a
sequence of inflations.
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Thank You!

Brettell, Chun, Fife, and Semple (MATRIX) Cyclic Arrangements of Ci ’s and C∗i ’s MDMW2019 18 / 18


