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The Basis: Saturation

Definition

Given a graph H, a graph G of order n is said to be H-saturated
provided G contains no copy of H, but the addition of any edge
from the complement of G creates a copy of H. That is, given
e ∈ Ḡ , then G + e contains a copy of H.
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Extremal Numbers - the original question

Definition

The maximum number of edges in an H-saturated graph of order
n is called the extremal number (or the Turan number) for H,
and is denoted as ex(n,H).
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Foundational Results on Extremal Numbers

Theorem

Turan, 1941

The unique graph with the maximum number of edges containing
no a copy of Kp (for p ≥ 3) is the complete balanced
(p − 1)-partite graph.

For triangles, this is the balanced complete bipartite graph, thus
ex(n,K3) = ⌊n/2⌋⌈n/2⌉. (Determined by W. Mantel et al. in
1906.)
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Foundational Results on Extremal Numbers

Theorem

Erdős - Stone, 1946

lim
n→∞

ex(n,G)

n2
=

1

2
(1−

1

χ(G )− 1
).
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Saturation Numbers - variation 1

Definition

The minimum size of an H-saturated graph of order n is called
the saturation number and is denoted as sat(n,H).
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Foundational Results on Saturation Numbers - Complete
Graphs

In 1964 Erdős, Hajnal and Moon determined that:

Theorem

sat(n,Kt) = (t− 2)(n− 1)−
(

t−2
2

)

.

Note: Zykov (1949) also introduced the idea, but in Russian so it
remains mostly unknown.
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The saturation graph for cliques

The graph Kt−2 ∨ K n−t+2, where ∨ denotes join.
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The saturation graph for cliques

The graph Kt−2 ∨ K n−t+2, where ∨ denotes join.

K
t−2 (n − t + 2)K
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The saturation graph for cliques

The graph Kt−2 ∨ K n−t+2, where ∨ denotes join.

K
t−2 (n − t + 2)K

Example: For a triangle, sat(n,K3) = n− 1 .
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Foundation Results - Kászonyi and Tuza, 1986

Theorem

For every graph F there exists a constant c such that

sat(n,F) < cn.

NOTE: All saturation numbers are linear in n, while extremal
numbers are usually quadratic in n.
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Useful properties of extremal numbers

Monotone properties:

Let F be a family of graphs. Then ex(n,F) satisfies:

1. ex(n,F) ≤ ex(n+ 1,F).

2. If F1 ⊂ F then ex(n,F1) ≤ ex(n,F).

3. If H ⊆ G , then ex(n,H) ≤ ex(n,G).
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Problems with saturation numbers

However, these rules do not hold in general for saturation numbers.
Example of 3. Consider K4 and a supergraph H obtained by
attaching an additional edge to K4. We know that
sat(n,K4) = 2n− 3. But for H we have:

here n = 4m and size = 6m

hence size = 3n/2

Thus, sat(n,H) ≤ 3n/2.
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Example Result

One of the early particular results on saturation numbers is due to
Olleman, 1972.

Theorem

sat(n,C4) =

⌊

3n− 5

2

⌋

.
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Another Variation - Saturation Spectrum

Definition

The set of all sizes of graphs on n vertices that are H-saturated is
called the saturation spectrum of H.
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Back to Cliques: K3

In 1995 Barefoot, Casey, Fisher, Fraughnaugh and Harary,
showed the following:

Theorem

For n ≥ 5, there exists a K3-saturated graph of order n with m
edges if and only if it is complete bipartite or

2n − 5 ≤ m ≤
⌊

(n−1)2

4

⌋

+ 1.
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Since sat(n,K3) = n− 1, there is a gap at the bottom.

This gap is between n − 1 and 2n − 5. This is a result of a
combination of connectivity (the star is the unique graph with
connectivity 1 that is K3-saturated and the fact that triangle
saturated graphs have diameter 2 (this forces more edges).
It is then easy to show the gap at the bottom exists. At the top,
extremal theory and convexity suffice.
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Larger cliques: Kt , t ≥ 4

With K. Amin, J. Faudree and E. Sidorowicz (2013) we were
able to generalize this result for all t ≥ 3.

Theorem

For n ≥ 3t + 4 and t ≥ 3, there is a Kt-saturated graph G of order
n with m edges if, and only if, G is complete (t − 1)-partite or

(t − 1)(n − t/2)− 2 ≤ m ≤
⌊

(t−2)n2−2n+(t−2)
2(t−1)

⌋

+ 1.

Note, same sort of gaps exist. Also note this reduces to the
Barefoot et al. result when t = 3.
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Saturation number for paths

Kászonyi and Tuza, 1986:

Theorem

1. For n ≥ 3, sat(n,P3) = ⌊n/2⌋.

2. For n ≥ 4,

sat(n,P4) =

{

n/2 n even

(n + 3)/2 n odd.

3. For n ≥ 5, sat(n,P5) =
⌈

5n−4
6

⌉

.
4. Let

ak =

{

3 · 2t−1 − 2 if k = 2t
4 · 2t−1 − 2 if k = 2t + 1.

then if n ≥ ak and k ≥ 6, sat(n,Pk) = n−
⌊

n
ak

⌋

.
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ex(n, Pk) - by several including Faudree and Schelp

Theorem

For all n ≥ 3,
1.

ex(n,P4) =

{

n if n ≡ 0(mod3)

n − 1 if n ≡ 1, 2(mod3).

2.

ex(n,P5) =











3n/2 if n ≡ 0(mod4)

3n/2− 2, if n ≡ 2(mod4)

3(n − 1)/2, if n ≡ 1, 3(mod4).

3.

ex(n,P6) =











2n, if n ≡ 1(mod5)

2n − 2, if n ≡ 1, 4(mod5)

2n − 3, if n ≡ 2, 3(mod5).
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Small Path Sat Spectrum

Work with W. Tang, E. Wei, C.Q. Zhang (2012).
If we consider P3 it is simple to see that:

Theorem

sat(n,P3) = ex(n,P3) = ⌊n/2⌋.

There is a simple procedure for evolving a P4-saturated graph from
the saturation number to the extremal number, one edge at a
time. Thus, the spectrum for P4 is complete.
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P4 has a continuous saturation spectrum

..

. . .

.
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Do any other graphs have a interval spectrum?

With J. Faudree, R. Faudree, M. Jacobson and B. Thomas (2009):

Theorem

If t ≥ 3 and n ≥ t + 1, then the saturation spectrum of the star
K1,t is an interval from sat(n,K1,t) to ex(n,K1,t).
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For completness

Kászonyi and Tuza:

Theorem

sat(n,K1,t) =

{

(

t
2

)

+
(

n−t
2

)

if t + 1 ≤ n ≤ t + t/2

⌈ t−1
2 n⌉ − t2/8 if t + 1/2 ≤ n.

Folklore??? Obvious!

Theorem

ex(n,K1,t) = ⌊ t−1
2
n⌋. That is, a graph that is t − 1-regular or

nearly regular.
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P5 with Tang, Wei and Zhang

Here things get a little bit more complicated.

Theorem

Let n ≥ 5 and sat(n,P5) ≤ m ≤ ex(n,P5) be integers. Then there
exists an (n,m) P5-saturated graph if and only if n ≡ 1, 2(mod4),
or

m 6=

{

3n−5
2 if n ≡ 3(mod4)

3n
2 − j , j = 1, 2, or 3 if n ≡ 0(mod4).
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Saturation spectrum for cliques minus an edge

The extremal number for K4 − e is achieved by the complete
bipartite graph.

sat(n,K4 − e) = ⌊3(n−1)
2

⌋, and is achieved by:

(a)

v

(b)

v
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Saturation spectrum for K4 − e

With Jessica Fuller we showed:

Theorem

If G is a K4 − e saturated graph on n vertices, then either G is a
complete bipartite graph, a 3-partite graph (like the saturation
graph of the previous frame), or has size in the interval

[2n − 4, ⌊
n

2
⌋⌈
n

2
⌉ − n + 6]

Here the gap between the saturation number and 2n-4 happens for
reasons similar to that for triangles.
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A look at the proof

Case: Suppose 4n − 18 ≤ m ≤ ⌊n2⌋⌈
n
2⌉ − n + 5.

Here |A| = n − |B | − |C | − 5, |B | = b ≥ 2, |C | = c ≥ 2, |D| = 2
and |E | = 3.

C

A

B

E

D

Then m = (n − c)(c + 2)− 5c + b − 4. So as b increases by 1,
with c fixed, then m increases by 1.
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Larger Cliques Minus an Edge

It is straight-forward to extend the K4 − e interval to larger cliques:

Theorem

There are Kt − e saturated graphs in the interval
[

(t − 2)n −
(

t−1
2

)

− 1,
⌊

n−t
2

⌋ ⌈

n−t
2

⌉

+ (t − 3)n −
(

t−2
2

)

− 1
]

.

Also, there are (Kt − e)-saturated graphs for sporadic values of m
between

⌊

n−t
2

⌋ ⌈

n−t
2

⌉

+ (t − 3)n −
(

t−2
2

)

+ 4 and
⌊

n−t
2

⌋ ⌈

n−t
2

⌉

+ (t − 2)n −
(

t−1
2

)

− 1.
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Extremal Number for the Fan Fk

With Erdős, Furedi and Gunderson (1995) we determined the
extremal number for fans Ft .

Theorem

For every t ≥ 1, and for every n ≥ 50t2, if a graph G on n vertices
has more than

⌊

n2

4

⌋

+







t2 − t if t is odd

t2 − 3
2 t if t is even

edges, then G contains a copy of the t-fan, Ft . Furthermore, the
number of edges is best possible.
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Saturation numbers for fans

With J. Fuller we showed the following:

Theorem

For t ≥ 2, and n ≥ 3t − 1, sat(n,Ft) = n+ 3t− 4.

Theorem

There exists an F2-saturated graph G on n ≥ 7 vertices and m
edges where m = n + 2, or 2n − 4 ≤ m ≤ ⌈n2⌉⌊

n
2⌋ − ⌊n2⌋+ 2, or m

is the size of a complete bipartite graph with one additional edge.

Ron GouldEmory UniversityMiss. Discrete Math WorkshopSupported by the Heilbrun Distinguished Emertius FellowshipThe Changing Face of Graph Saturation



Another Variation - due to Bollobás, 1967

Definition

A graph F is weakly G -saturated if F does not contain a copy of
G , but there is an ordering of the missing edges of G so that if
they are added one at a time, each edge creates a new copy of F .
The minimum size of a weakly F -saturated graph G of order n is
denoted wsat(n,F).
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Note:
wsat(n,H) ≤ sat(n,H),
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Note:
wsat(n,H) ≤ sat(n,H),

since any ordering works for an H-saturated graph.
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Note:
wsat(n,H) ≤ sat(n,H),

since any ordering works for an H-saturated graph.

Interesting when we can find such an ordering on a graph that is
not H-saturated.
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Foundational Result on Weak Saturation

The following result was conjectured by Bollobás for all k and
verified for 3 ≤ k ≤ 7.

Theorem

Lovász, 1977 and new proof by Kalai, 1984

For integers n and k,

wsat(n,Kk) = sat(n,Kk) =

(

k− 2

2

)

+ (k− 2)(n− k+ 2).
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More Key Results on Weak Saturation

Borowiecki and Sidorowicz (2002) - Cycles:

Theorem

(1) For n ≥ 2k + 1, wsat(n,C2k+1) = n− 1.

(2) For n ≥ 2k, wsat(n,C2k) = n.
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Recall: Ollman showed sat(n,C4) = ⌊3n−5
2

⌋.

But wsat(n,C4) = n. Hence,
we know that wsat(n,H) is not equal to sat(n,H) in general.
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Question:

Question

For which graphs G is sat(n,G) = wsat(n,G)?
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Variation - Changing the host graph

Bipartie Saturation: Introduced by Erdős, Hajnal, and Moon.
We seek the minimum number of edges in an H-free bipartite
graph with n vertices in each partite set. This definition is only
meaningful if H is bipartite.

Conjecture

sat(Kn,n,Ks,t) = n2 − (n− s+ 1)2.
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Gan, Korándi, and Sudakov, (2015)

Theorem

Let 1 ≤ s ≤ t be fixed integers and n ≥ t. Then

sat(Kn,n,Ks,t) ≥ (s+ t− 2)n− (s+ t− 2)2.
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Variation - Ordering

In the bipartite setting add the additional restriction:

Order the two partite sets of H and of G , then require that each
missing edge create a copy of H respecting these orderings. This
means that the first class of H lies in the first class of G .

Wessel (1966) and Bollobas (1967) independently showed that the
ordered saturation number of Ks,t is n

2 − (n − s + 1)(n + t + 1).
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Extension - Multipartite Graphs: Sullivan and Wenger 2017

Theorem

Let ℓ be a positive integer. If ni , for i = 1, 2, 3 are positive integers
such that n1 ≥ n2 ≥ n3 ≥ 32ℓ3 + 40ℓ2 + 11ℓ, then

sat(Kn1,n2,n3 ,Kℓ,ℓ,ℓ) = 2ℓ(n1 + n2 + n3)− 3ℓ2 − 3.
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Theorem

Let ℓ be a positive integer. If ni , i = 1, 2, 3 are positive integers
such that n1 ≥ n2 ≥ n3 ≥ 32(ℓ− 1)3 + 40(ℓn − 1)2 + 11(ℓ− 1),
then

sat(Kn1,n2,n3 ,Kℓ,ℓ,ℓ−1) = 2(ℓ− 1)(n1 + n2 + n3)− 3(ℓ− 1)2.
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Variation - Edge-Colored Saturation: Barrus et al, 2017

The t-colored rainbow saturation number rsatt(n,F) is the
minimum size of a t-edge-colored graph on n vertices that contains
no rainbow colored copy of F (all edges colored differently), but
the addition of any missing edge in any color creates a rainbow
copy of F .

Let R(Ks) be the set of all rainbow colored copies of Ks .
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Barrus et al.

Theorem

For constants c1 and c2,

c1
n log n

log log n
≤ rsatt(n,R(Ks) ≤ c2n log n.

They further showed that the upper bound was of the right order
of magnitude.
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This was also shown by Korándi (2018) in a strong sense.

Theorem

For s ≥ 3 and t ≥
(

s
2

)

, we have

rsatt(n,Ks) ≥
t(1+o(1))

(t−s+2) log (t−s+2)n log n,

with equality for s = 3.
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Rainbow stars

Theorem

Barrus et al. (2017) 1. If t ≥ k and n ≥ (k + 1)(k − 1)/t then

rsatt(n,R(K1,k) = (1+ o(1))
k− 1

2t
n2.

2. For all k ≥ 4, rsatt(n,R(Pk)) ≥ n− 1.

Question

Is there a graph G 6= K1,m such that rsatt(n,R(G)) = θ(n2)?
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The Variations shown

(rainbow saturation)

extremal numbers

saturation numbers

weak saturation

saturation spectrum

changing host

coloring edges

tripartite, ...)
(bipartite,
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Deeper Results: Saturation for unions of cliques

With R. Faudree, M. Ferrara, and M. Jacobson (2009):
First tKp.

Theorem

Let t ≥ 1, p ≥ 3 and n ≥ p(p + 1)t − p2 + 2p − 6 be integers.
Then

sat(n, tKp) = (t− 1)

(

p+ 1

2

)

+

(

p− 2

2

)

+ (p− 2)(n− p+ 2).
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Kp ∪ Kq

Theorem

Let 2 ≤ p ≤ q and n ≥ q(q + 1) + 3(p − 2) be integers. Then

sat(n,Kp ∪Kq) = (p− 2)(n− p+ 2) +

(

p− 2

2

)

+

(

q+ 1

2

)

.
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Generalized Fans

Definition

Let the graph comprised of t copies of Kp intersecting in a
common Kℓ be called a generalized fan and be denoted Fp,ℓ
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with Faudree, Ferrara, and Jacobson

Theorem

Let p ≥ 3, t ≥ 2 and p − 2 ≥ ℓ ≥ 1 be integers. Then, for
sufficiently large n,

sat(n,Fp,ℓ) = (p− 2)(n− p+ 2)+

(

p− 2

2

)

+(t− 1)

(

p− ℓ+ 1

2

)

.
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with G. Chen, F. Pfender and B. Wei 2003

Definition

A graph on (r − 1)k + 1 vertices consisting of k cliques each with
r vertices, which intersect in exactly one common vertex, is called
a (k , r)− fan.

Theorem

For every k ≥ 1, and for every n ≥ 16k3r8, if a graph G on n
vertices has more than

ex(n,Kr) +







k2 − k if k is odd

k2 − 3
2k if t is even

edges, then G contains a copy of the (k , r)-fan. Furthermore, the
number of edges is best possible.
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To see the last result is best possible consider:

For odd k take the Turan graph and embed two vertex disjoint
copies of Kk in one partite set.

For even k take the Turan graph and embed a graph with 2k − 1
vertices and k2 − (3/2)k edges with max degree k − 1 in one
partite set.
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Gaps: work with P. Horn,, M. Jacobson and B. Thomas

Definition

A tree T of order ℓ, T 6= K1,ℓ−1, having a vertex that is adjacent
to at least ⌊ ℓ

2⌋ leaves is called a scrub-grass tree.

Theorem

Let T be a path or scrub-grass tree on ℓ ≥ 6 vertices and
n = |G | ≡ 0 mod(ℓ− 1) and m be an integer such that
1 ≤ m ≤ ⌊ ℓ−2

2 ⌋ − 1. There is no graph of size n
ℓ−1

(

l−1
2

)

−m in the
spectrum of T . Hence, there is a gap in the spectrum.
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With R. Faudree and M. Jacobson, 2013

If F is a graph of order p and size q:

Theorem

δn

2
−

n

δ + 1
≤ wsat(n,F) ≤ (δ − 1)n+ (p− 1)

p− 2δ

2
.
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wsat for Trees

We further showed that for any tree Tp on p vertices:

Theorem

p − 2 ≤ wsat(n,Tp) ≤

(

p− 1

2

)

.
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weak sat for multiple copies

with R. Faudree (2014):

Theorem

wsat(n, kKt) = (t− 2)n+ k− (t2 − 3t+ 4)/2.
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Theorem

wsat(n, kCt) =

{

n + k − 2 if t is odd

n + k − 1 if t is even.

Ron GouldEmory UniversityMiss. Discrete Math WorkshopSupported by the Heilbrun Distinguished Emertius FellowshipThe Changing Face of Graph Saturation


